Predicting Cryptocurrency Fluctuations Based on Public Opinion
Dante Zakhidov' (zakhidov), Abdulmalik Obaid! (amobaid), Scott Keene!' (stkeene)

!Department of Materials Science and Engineering, Stanford University

Github: https://github.com/obaiam1 1/Bitcoin-Price-Prediction

Introduction:

Cryptocurrency has recently taken off with Bitcoin increasing in value by ~13x in the past year. However,
one of the risks associated with this currency is the fluctuations in price, which can be as large as a 24%
change in price in a single day'.Most quantitative methods used to analyze markets use numerical data but
struggle to accurately account for the effect of speculation and emotions. In this work, we aim to build a
neural network which can predict market trends by using public confidence in Bitcoin in order to
strategically analyze Bitcoin trends.

Dataset:

We first started with Bitcoin market data that was publicly available on Kaggle:. The dataset consists of
Bitcoin historical data from December 1st, 2014 to January 8th, 2018 divided into one-minute increments.
This time frame consists of 1,574,274 minutes. For each timestamp, the data included information on the
opening value, the closing value, the highest value, the lowest value, the volume traded, and the weighted
price. In an effort to iterate quickly and build an initial model, we opted to first analyze the polarity trends
in the market. The dataset was labeled as true if the price went up at the end of the minute timestamp and
false if it stayed the same or decreased.

True, Close — Open > 0

Cplaval= {False, Close — Open = 0

By training on the trend of the market, we hoped to be able to predict when the price would change. In
addition to adding the “up label” which is our y column, we added columns for the variance and frequency
of our data. After seeing that a basic polarity metric doesn’t work, we bin the data into buckets of positive
or negative percent increase to reduce dependence on noise.

Looking at a trimmed version of the dataset, we see from the first few rows that there will be issues with
distribution of the dataset. The price of bitcoin was stable in 2014 and 2015 as interest for the
cryptocurrency had not yet gained traction. The price then almost monotonically increased until late 2017
where it plummeted and that ends the data set. This volatility in the cryptocurrency market (and any market)
dominates our dataset and is the main hurdle in accurate prediction.

Timestamp Open Close Up_Label 20000
17500
0 1417411980 3000 3000 False 15000 !
1 1417412040 3000 300.0 False gusoo‘ '
8- 10000
o
2 1417412100 3000 3000 Fake {
3 1417412160 3000 3000 False © s000
4 1417412220 3000 300.0 False mz‘ | _ _w,,_,,./"',y
142 144 146 148 150 152

1eQ
Figure 1: Trimmed dataset showing Unix timestamp, open and closing values, and how we labeled
the change. The figure on the right shows Bitcoin price from Dec 2014 to Jan 2018 with the x-axis in
unix time.

=3
.=

=

-

Day 1 Price Data

Day 2 Price Data

Day 3 Price Data

Day 4 Price Data

First Pass: Predicting Polarity using RNN

The obvious end-goal of creating a
cryptocurrency based neural network is
to predict price fluctuations in real time.
With this goal in mind, we were eager to
start with a highly temporally resolved
dataset. If we could get information on a
minute by minute or second by second
timescale, we could do an even better job
of predicting prices and staying ahead of
the market. Furthermore, there would be
millions of data points and that would be
a dataset size that neural networks excel
at. However, as we alluded to above, we
realized that there also issues with highly
resolved data. When looking at our
minute dataset, we had an intuition that
there would be no change on a minute
timescale, or if there was change, that it
was very small and noisy. The graph

Distribution of Percent Change in Minute Dataset

10

08

06 1

04

0.2

0.0

0 1 2 3 4 5 6
Figure 2: X-axis represents bins showing percent change.
The middle bin (3) has the majority of the 1.5 million

minute data points and represents change that is -
0.003 %< change < 0.003%

above shows that nearly all the 1.5 million minutes fall within the “third bin” which represented
price changes below 0.003%. As a result, our model wouldn’t be able to learn the price change
since it would mostly be fitting to noisy data and any meaningful change would be drowned out.
To note, at this early point in the project we had not actually binned our “y-values” yet but based
on our intuition, we decided to convert the minute dataset into a daily dataset. The graph above is

made after the fact to show the distribution.

Given the temporal nature of the data, it was most intuitive to use a recurrent neural network. We
decided to start with a long short-term memory (LTSM) model. We had three LSTM layers
followed by a dense layer with batch normalization in between. We used a 4 day moving window
and had a softmax classifier to categorize the output.

LSTM 1 BatchNorm LSTM2 BatchNorm LSTM 3 BatchNorm

ad)

Ua <t> Ua <t>

1'%
L4

» Y hat

Classifier (o, softmax)

Dense

Figure 3: RNN model and parameters

RNN Model Settings

batch normalization 54 (Batc (32, 4, 64) 256

stm_41 (LSTM) (32, 4, 64) 33024

Loss

6.85 4

6.80

0 | A, <-25% e
Softmax Layer 0 |[-25%<A,, <-1% o
Dense Output 0 |-1%<a,, <03% z...
Price o 195
—Pp —P [o |-03%<4, . <03% g 0
0 |03%<A,, <1% 185
1 [1%<4A,, <25% 18.0
0 |A,..>25% 537

However, even after converting to the less noisy daily dataset, looking at just polarity changes, we
quickly saw that our model was unable to fit even the training set. In the figure below on the left
we see that the loss for the train and dev sets doesn’t change at all over 500 epochs and the accuracy
i1s 55.8%. This means that the model finds a stable minimum immediately. If you look at the
distribution of the “up” and “down” labels (remember, not binned at the moment), we see that the
number of up labels divided by total days is equal to 55.9%. So, the model just guesses “up” each
time instead of developing a pattern. Furthermore, if you compare to a baseline model that uses
exponentially weighted moving average, we see that the baseline accuracy hovers around 55%
depending on the number of previous days considered. It was clear at this point that learning on a
simple parameter such as up or down was not sufficient.

56
7.05 1 — Train
Up_Label Dev 55 |
7.00 4
54 P
One Day Lag Model
6.95 o
@ 531 1 i O
|
5 of VN
] { Xl [
6.90 K 52 20 \ { \ /
‘-5“ \\ / \ c,
= TV
0o v I’ V
50 1 14876 14878 14880 14882 145841 .
0 100 200 300 400 500 0 20 40 6 8 100 120 140

Epoch Number of Days Considered

Figures 3 and 4: Figure on the left shows inability of our model to train on a polarity score. Figure on the
right is a baseline model to assess minimum accuracy that needs to be beat. It uses an exponentially
weighted moving average. When the number of days considered is one, we have a simple lag model

where yesterday’s polarity is used to predict the polarity for today.

Analyzing Percent Change: Overfit Training but no Generalization

Based on a good suggestion from our TA Guillaume, we moved away from learning on polarity to
learning on percent change. This was calculated by taking (Closing cost — Opening cost)/Opening
Cost. A one-hot vector was created for each time point and correctly classified based on percent
change. We spent considerable time figuring out how to bin the percent change to make an even

Onia-Hot Vactor Libals Bzflageline: Exponentially Weighted Moving Average

2 4 6 8 10 12 14
Number of Days Considered

Figures 5 and 6: Figure 5 shows the new classification scheme and Figure 6 shows the corresponding baseline

Accuracy

distribution. We first tried to make logarithmic bin spacing but the distribution was uneven. Then
we created a function where we could iterate through many different bin settings and ultimately
decided on 7 custom bin ranges that are shown in Figure 5. This created a relatively even
distribution of values that can be seen in the inset of Figure 7. Given the seven bins, random
guessing would give a 14.3% accuracy. Looking at the exponentially weighted moving average
baseline, we see that we need to beat a ~21% accuracy

Training our LSTM model on this new set of classifications, we see in Figure 7 that we can overfit
on the training set but are still not able to generalize well to the validation set. The validation
accuracy can not beat our baseline. Seeing that there is a large variance problem, we look to
regularization to try to improve our accuracy. We tried dropout, L2 regularization, and L1
regularization but none of them improved the validation set accuracy. L2 worked the best, allowing
us to fully overfit the data but the validation accuracy stayed at ~20%.

Training Accuracy with L2 Regularization

— Train 10 1 e Train
Dev Dev
0.8 1
0.6
044
0 100 200 300 400 500 0 200 400 600 800 1000
Epoch Epoch)

Figures 7 and 8: Figure 7 shows model performance on binned y-values Figure 8 shows effect of L2 regularization

More Data: Adding Google Search Data and Twitter Sentiment

At this point, we see that pricing

data alone can not accurately ;4175 | —— Google Searches
perICtt Charllgde St ln bltC(gndpr\l;;e 0.0150 Bitcoin Price Prediction with Google Search History Sl
and external data is needed. We 0. 1 1o — o
first look to google search - -
. . 0.0125 A
history and see if we can use i
number of google searches to poio04 "
predict prices. Inputting a Y
normalized daily search dataset 9007571 Ww Wy
from Google* as another 0.0050 4 ¥
variable, we don’t see any . WO B e
improvement our dataset. We 0.0025 4
still overfit our training data and o e
our validation accuracy hovers A0 . , . : : .
just above 20%. We look at the 0 200 400 . 600 800 1000
ime

overlap of google searches with

Sentiment

04

0.3 |

0.2 1

0.1 1

0.0 1

BTC price and see that google searches very closely match BTC price trends. We see that google
searches don’t give predictive power as they are mostly reactive and don’t give additional
information.

Next, we look to twitter sentiment to see if that can improve our validation accuracy. We ran into
many difficulties with twitter scraping since the official twitter API, Tweepy, only allows tweets
from the last 6-9 days to be scraped. A few options exist to get past the limitations Twitter places,
but they are cumbersome to use and have unpredictable outputs. The output from these
workarounds is also inconsistent, so preprocessing needs to be done to pull out the text from each
of the tweets. The best one we found was a scraper from Jefferson Henrique®.

Because of the difficulties associated with scraping a Bitcoin Price Prediction using Twitter Sentiment
consistent number of tweets over a long time we opted
to do a small case study of a single month. We analyzed
November 2017, which was a period of historic growth 08 |
for Bitcoin where it raised in price from $6000 to
$10,000 over one month. Using the VADER sentiment
analysis tool’, we took 30 random tweets from each
day, got a compound sentiment score for each tweet and
then averaged the score which is given in Figure 10.
Because we only took 30 random tweets, we see that
the twitter sentiment does not follow the bitcoin price
well. When we add this data as an additional input into
our model, we do not see any improved performance in Epoch
accuracy.

10 1 —— Train

Dev

Accuracy

iy

Averaged Twitter Sentiment Bitcoln Svices i Sovemi

11000

10000
'l

9000 /

8000 ”W"‘J W

._|..||I||.|.||,|I_| pv 7

Closing Price($)

6000 1

: ' ' ' . . 5000 . : . .
0 g 10 15 20 2% 15095 15100 15105 15110 15115

Day in November

1le9

Conclusions:

In conclusion, the volatility of the market made our dataset extremely difficult to work with. Future
work would have included acquiring more social media text but based on the other poster
presentations that specialized in twitter sentiment, this would not improve our results by much.
Ultimately, this is a difficult problem to solve because any predictive purchases or sells made by
the algorithm would change the market and require the model to account for other neural networks
making trades.

Contributions:

Scott Keene: Pricing dataset acquisition, dataset structuring, Keras Model, Google Search
Abdul Obaid: Hyperparameter tuning, Twitter scraping, Data analysis and write-up,

Dante Zakhidov: Baseline Modeling, Vader Sentiment Analysis, Data analysis and write-up

References:

1: Estrada, J., Analyzing Bitcoin Price Volatility. University of Berkeley Doctoral Thesis. (2017)

2: https://www.kaggle.com/mczielinski/bitcoin-historical-data

3. https://trends.google.com/trends/explore?q=bitcoin

4. Hutto, C.J. & Gilbert, E.E. (2014). VADER: A Parsimonious Rule-based Model for Sentiment
Analysis of Social Media Text. Eighth International Conference on Weblogs and Social Media ICWSM-
14). Ann Arbor, MI, June 2014.

5. https://github.com/Jefferson-Henrique/GetOldTweets-python.

