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Abstract

Dense haze caused by air pollution may block the view of
the National Parks. In this project, we take outdoor images
as inputs to 1) estimate their air pollution levels 2) gener-
ate haze-free images. We compare the performance of deep
learning method with the Dark Channel Priors algorithm
which is a traditional dehaze method. The deep nets show
better performance at haze level prediction while producing
satisfactory dehazed images.

1. Introduction

Every year, thousands of visitors visit U.S. National
Parks. Many of their pictures may be blurred because of
haze. However, monitoring the air pollution level usually
depends on special devices, which might not be easily ac-
cessible to the public. In this project, we take we take out-
door images as inputs to predict air pollution levels and gen-
erate haze-free images.

2. Dataset
A. FRIDA Dataset

This dataset contains 3024 synthetic images (Figure
1) with 88 different scenes [5] and their haze level la-
bels based on the algorithms and dataset provided by the
FRIDA (Foggy Road Image DAtabase) and FRIDA2[8] [7]
dataset.

B. National Parks Dataset

This dataset contains 145,803 images(Figure 2) from
different national parks with 11 fixed cameras in 2016.
Cameras take pictures every 15 mins and we only keep
images from 7am to 6pm at the daytime. All pictures
are crawled from https://npgallery.nps.gov/
AirWebCams/and resized into 512*512*3 with the help
of Google Compute Engine.

Since the national park dataset is limited in the num-
ber of different scenes, we would like to first train a model
on the synthetic dataset and generalize to the national park
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Figure 1: Low haze and high haze samples with size

64%64*3
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Figure 2: Low ozone and high ozone pollution images of
Yosemite National Park with size 512*512*3

dataset. The synthetic dataset is also augmented to provide
more taining examples.

Our output label is the matched hourly Ozone level
from Clean Air Status and Trends Network (CASTNET)
in Environmental Protection Agency https://java.
epa.gov/castnet/clearsession.do. However,
in the real world, the pollution levels are normally dis-
tributed(Figure 3), which would lead to high uncertainty in
the end-member cases.

3. Approach
3.1. Dark Channel Prior

In this section, we introduce a popular method in haze
removal: dark channel priors and its correponding atmo-
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Figure 3: The histogram of Ozone level (ppb)

spheric scattering model [6] to understand how the haze im-
pacts the image.
Each haze image consist two parts:

I=Jxt+Ax(1-1)

1 is the hazy image, ¢ is the transmission map, .J is the scene
radiance and A is the atmospheric light. Haze removal is to
get J with estimation of A and ¢. To solve that, we define
dark channel:
J4k — min(minl)
Q “rgb

For outdoor haze-free images:
Jdark =0

therefore, t = 1 — mé'n(mirbz,%), A can be estimated by
.9,

brightest pixels in dark channels. Therefore, we can remove
haze first with the estimation of ¢. That is the most popular
dehaze method without using any deep learning methods.

Input output

Figure 4: Haze removal example with Dark Channel Prior

3.2. Haze Prediction
3.2.1 Linear Regression

We use the mean of the ‘removed’ haze and feed it into a
linear regression model to predict the haze level. As a di-
rect way to make prediction, this method is not doing well
since it missed the depth information. To better utilize the
information form the image, we try the CNN method.

3.2.2 Convolutional Neural Network

The second method we try is CNN, since it is good at ex-
tracting features from an image. We use 4 convolution lay-
ers and max pooling layers shown in Figure 5 and 2 fully

Input size: 5%5%3 size: 5%5*16
64%64°3 channel: 16 channel: 32 channel: 64 channel: 128
padding: same padding: same padding: same padding: same

Max Pooling; Max Pooling: Max Pooling; Max Pooling:
f=2,5=2 t=2,5=2 f=2,5=2 t=2,5=2

Figure 5: CNN structure

connected layers at the end. The prediction of haze doesn’t
rely on local features too much, so we use relatively large
filters.

We first trained the CNN on FRIDA dataset since this
dataset has diverse scenes. Before training, we resized the
image to 64 x 64 to reduce the input size. Because details
of the image are irrelevant to haze level, it won’t hurt too
much to the prediction. FRIDA data set was divided into
three categories: 70% training set, 15% dev set and 15%
test set, then trained the CNN to classify the images into
three haze levels. We tuned hyperparameters such as learn-
ing rate, mini-batch size and bn momentum to optimize our
CNN. Besides, early stop was used to reduce overfit. And
metric we used is accuracy of prediction.

When the CNN was well-trained on FRIDA data set, we
transferred to National Parks dataset. Since this dataset has
only one scene for each national park, we used weights of
pre-trained CNN as a starting point to finetune the param-
eters in order to avoid fitting to a certain scene. For this
task, we replaced the last layer with 6 neutrons since we are
going to classify images into 6 haze levels.

Our code in this section could be found at https://
github.com/Douphoton/CS230_project

3.3. Dehaze
3.3.1 Neural Style Transfer

Neural Style Transfer is one of the most fun techiques in
deep learning [2]. It merges two different images based on
the loss we defined. In this section we will use that idea to
perform haze removal.

We are going to generate a image G with the content
C of our haze image and the style .S of the corresponding
haze-free dark channel prior.(Figure 6)

Content + Style = Generated

Figure 6: Neural Style Tranfer

For the dehaze problem, we would like to preserve more
lower-level features in order to generate an image with clear
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(b) Adjusted histogram of Dark
Channel Prior of Content Image

(a) The histogram of Dark
Channel Prior of Content Image

(c) Dark Channel Prior of Con-
tent Image

(d) Adjusted Dark Channel
Prior of Content Image

Figure 7: Adjust the histogram

edges. We set the image C' (also our haze image) as the in-
put to the pretrained VGG network, and run forward prop-
agation. The content cost function is calculated between
the content and generated images of convl_2’ and ’input’
layers.
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layers all entries

ng,nw and ne are the height, width and number of chan-
nels of the layer we have chosen.

For Style cost, we cannot just use the dark channel prior
of the content image. We can see the histogram of the dark
channel prior of the content image is not clustered at O(Fig-
ure 7). Haze-free dark channel prior is clustered at 0. There-
fore, we adjust the histogram and remove larger values (ex-
cept completely white pixels) to get a target dark channel

prior of our Style.

After we have adjusted dark channel prior as the Style
image, we can define our style cost by calculating the dark
channel of style image and generated image.

o Be

1 () (G)y2
DC:”’—DC':;
dxnc*xnyg *xny ;Jz::l( C” C” )

Tstyle(S,G) = >

layers
DC is short for dark prior channels. And we use
’input’,’convl_1",conv2_1’,conv3_1" layers with different
weights.

We first randomly generate G and then use Adam opti-
mizier to update pixels on our G to minimize the content
and style cost.

Our code for Neural Style Transfer could be
found at https://github.com/1lijingwang/
deepDehazeNets/blob/master/NSTdehaze.
ipynb

Figure 8: Left:Augmented Images with 5 = le — 4, le —
5, le — 6.Right:Corresponding transmission maps of Aug-
mented Images

3.3.2 Deep Neural Nets for Dehaze

In this section, we want to build an End-to-End Dehaze Net-
works with inputs haze images and outputs corresponding
transmission maps. In order to get transmission maps, we
need corresponding haze-free images. FRIDA?2 is what we
are looking for. FRIDA2 is a part of FRIDA dataset and
has 66 diverse road scenes. And each image without fog is
associated 4 foggy images and a depthmap. Before training
our networks, we need to do data augmentation to get more
training images.

Data Augmentation We want to physically simulate fog
on images(Figure 8). The transmission map in reality is
related to the depth map and it satisfied the exponential law
[4].

t(d) = e P*d

t(d) is the transmission map with the covariate d (depth). 8
is controlling the thickness of the fog.

We tune g from le-4 to le-6. As the 3 decreases, fogs
density decreases and the visibility increases. Therefore, we
can add physical haze on images and have the ground truth
for the transmission map.

Using physical model, we augment 100 images for each
diverse road scene with 3 from le-4 to le-6, in total 6000



images. Together with associated 4 foggy images for each
scene, we have 6264 images.

Deep Neural Nets We divided our augmented dataset into
3 parts: training sets, 54 scenes, 5616 images; dev sets, 6
scenes, 624 images; test sets, 6 scenes, 624 images. Our
inputs are haze images and outputs are corresponding trans-
mission maps.

For dark channel prior, we calculate the minimum value
over 3 color channels. And it can be similarly done with
Maxout Layers [1] [3] in deep learning. This maxout oper-
ation is performed in the filter/channel dimension and it cal-
culate the maximum value over different channels. There-
fore, we first perform convolutional 2D networks(Figure 9)
to get more channels and reduce dimensions with maxout.

After maxout, we want to extract more features to get
our transmission map. Each pixel value on a transmission
map is only related to close neighbours. So we do not need
to mix pixels up. Instead, we do 2D convolutions around
neighbours with more filters. 1*1 convolution network is to
reduce dimension on filter dimensions so that we can per-
form sigmoid function for each pixel. Sigmoid out is our
prediction for the transmission map. For each layer, we per-
form Batch Normalization to reduces the amount that hid-
den unit values shift around.
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Output = 64*64*1

Input = 64*64*3 Conv: Maxout: Conv: 1*1 Conv: Sigmoid:
Size: 3*3*3 Channel: 4 Size: 3*3*4 Channel: 1 Channel: 1
Channel: 64 Output: 64*64*4 5*5%4 Padding: same Padding: same
Padding: same 7774 Output: 64*64*1 Output: 64*64*1
Output: 64*64*64 Channel: 16
Padding: same
Output: 64*64*48

Figure 9: Structure of our Deep Neural Nets

Our Training Loss is defined as below:

L= YT (sigmoid output — transmission map)>

Based on the loss function we have, we use the Adam opti-
mizer to minimize training and dev loss.

Our code for Deep Neural Nets for Dehaze could
be found at https://github.com/1lijingwang/
deepDehazeNets

4. Result and discussion
4.1. Haze Prediction
4.1.1 Linear Regression

The accuracy for 3 classes classification with knn of haze
level is 0.64(Figure 10).
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Figure 10: Linear Regression x: mean of removed haze, y:
haze level
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Figure 11: Performance on training set

4.1.2 Convolutional Neural Network

For FRIDA dataset, we used Adam optimizer with a learn-
ing rate of le-3, batch-norm momentum of 0.9, training for
100 epochs, got 99.9% accuracy on training set and 98.8%
accuracy on test set. The loss and accuracy as a function of
training step are shown in Figure 11.

For Naitonal Parks dataset, the best accuracy on test set
is 85% up to now. Reasons why performance is not good as
FRIDA dataset are: 1) We have more haze levels 2) Num-
bers of images in each haze level are quite different. Some
haze level only has few images therefore the accuracy on
these levels could be unsatisfied. 3) Compared with FRIDA
dataset where the brightness is same for all images, images
of Natinal Parks have different brightness since they were
taken at different time.

4.2. Dehaze
4.2.1 Neural Style Tranfer

There are two cars and one road sign in our generate im-
age(Figure 12). However, they are impossible to be noticed
in content image. This method works to find out more de-
tails hidden in content image.



Figure 12: Generated Image after 100 iterations

It also has some downsides. It is not corresponding to
our original colors and not very clear on existing details.
Therefore we build a more sophisticated network to perform
haze removal with the end-to-end principle.

4.2.2 The End to End Dehaze Deep Neural Nets

We tune the hyperparameter(Figure 13) : learning rate to
find out the most appropriate one in our training. 0.01 is too

Hyperparameter
experiments/learning_rate/learning_rate_0.01
experiments/learning_rate/learning_rate_0.001
experiments/learning_rate/learning_rate_0.0001

Dev Set Loss after 10 epochs
0.0137874
0.0111132
0.0245682

Figure 13: Hyperparameter Tunning

fast and it seems to oscillate around local minimal. 0.0001
is too slow to achieve a lower loss. Therefore we pick 0.001
as the learning rate together with 16 channels and batch size
32 in our training.

We train our network for 50 epoches(Figure 14) and de-
velopment set accuracy achieved the best result at epoch 20,
so we early stop at epoch 20.
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Figure 14: Loss on Training Set and Dev Set

Our best result gives 0.012 loss on training set, 0.011 loss
on development set and 0.015 loss on test set.

Therefore, we can use our networks to predict transmis-
sion map and dehaze images. We can see our predicted
transmission map(Figure 15) is similar to the real one. And
ours reveals more details after dehazing.

White lines on the ground are unrecognizable on the real
transmission map but not ours. It is not surprising because
we have these lines in our input image and white lines can
be treated as low transmission areas.

Neural Nets Output Real

Transmission Map

Dehaze with
Transmission Map

Figure 15: Dehaze with predicted transmission map

After evaluated our network on synthetic examples, we
generalize to the National Parks dataset(Figure 16):

Yosemite Nation Parks

Transmission Map

Dehaze Image

Figure 16: Dehaze on Yosemite Images

Our dehazing result show satisfactory performance at
different scenes though the recovered sky is not very realis-
tic. One possible explanation is that we previously trained
our network with white haze and air lights. Although it is
a good estimation in the synthetic examples, it is not well
representing the light condition in the national parks. To
improve that in the future, we need to dehaze with different
air lights in outdoor scenes.

5. Conclusions and Future Works

In this project, we successfully predict the air pollution
level from an outdoor image. We also achieved desirable
result in image dehazing. Our future work includes:dehaze
with different air lights in outdoor scenes;fine tune parame-
ter on national park dataset;train GANSs to generate images
on requested weather conditions.

6. Contributions

All team members contributed to the progress of the
project. Specific work assignment is as follows. Jiaqi Jiang
implemented CNN using TensorFlow and helped write up
the milestone. Kaiwen Wang performed haze removal with
dark channel prior, made poster and drafted the final write
up. Lijing Wang collected and cleaned National Parks Data,



performed haze removal by Neural Style Transfer,wrote up
the milestone, and performed data augmentation.
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