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In free-electron lasers (FELSs), the X-ray pulses are generated from spontaneous undulator radiation
of electrons, which causes shot-to-shot fluctuations in the intensity, pointing, and spatial profile of

the X-ray beam.

In this project, we use deep neural networks to classify large amounts of X-ray

images, which enables us to obtain statistical information of this intrinsically stochastic process. Both
a supervised model and an unsupervised model are built, and the results are compared.
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1. Introduction

The successful operations of free-electron laser (FEL)
facilities across the globe [1, 2] have made it possible
to produce extremely short X-ray pulses with un-
precedented brightness: a typical pulse delivers more
than 10! coherent photons within 10~3 seconds.
This has enabled many new X-ray tools to be used
at the forefront of research in physics, chemistry,
life science, material and energy sciences [3—-10]. For
many of these applications, it is vitally important to
understand the X-ray beam profile and have the abil-
ity to control it. In particular, higher-order modes
appear in some shots but not others [11] (see Fig. 1),
and we would like to suppress (or enhance) these
higher-order modes in order to address experimental
needs.

Because FEL X-rays are generated by accelerated
electron bunches from an undulator, we should in
principle be able to control the X-ray profile by
changing the electron bunch parameters. In prac-
tice, however, because the FEL generation process
is inherently stochastic [12], the X-ray beam profile
varies from pulse to pulse and is difficult to predict
from electron bunch parameters using physical prin-
ciples. Thus, an experiment was carried out where
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Fig. 1: Examples of beam profiles. (a) 0''-order

mode, labeled “0”. (b)-(d) higher-order modes,
labeled “17.

a large amount of X-ray pulses were recorded along
with various electron bunch parameters, with the
aim to understand the correlations between these
parameters and the X-ray beam profiles. To achieve
this goal, one major task is to classify the X-ray
profile images. However, this classification is hard
to define mathematically, especially because FEL
pulses very often deviate from ideal Gaussian modes.
Therefore, our project aims to use deep neural net-
works to classify the X-ray images. The project is
divided into two parts: (1) a supervised learning
part, where the inputs are 100 x 100 x 1 X-ray beam
profiles, and a convolutional neural network (CNN)
is trained to categorize them as “0” or “1” (see
Fig. 1); (2) an unsupervised learning part, where we
use an autoencoder neural network trained on the
same input to learn a 32-dimensional representation
of the images. We compare results from the two ap-
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Fig. 2: Supervised learning CNN architecture.
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Fig. 3: Loss history for the training and dev sets in
supervised CNN training. The brown dashed line
indicates the position of early stopping.

proaches, and use them to understand the influence
of various external parameters.

2. Dataset

Our dataset comes from Experiment X227 at the
Linac Coherent Light Source (LCLS), an FEL facil-
ity at SLAC National Accelerator Laboratory. Dur-
ing this experiment, more than one million X-ray
profiles were recorded along with various external
parameters, such as electron bunch charge, electron
beam energy, undulator length, etc. The X-ray pro-
files are originally 1080 x 1280 x 1 grayscale images
denoting the X-ray intensity at each pixel, but are
cropped and downsized to 100 x 100 x 1 in order to
expedite learning. The downsized images are used
as the input X.

Fig. 4: Examples of ambiguous images which are
hard to label as “0” or “1”.

3. Supervised learning
3.A. CNN architecture and training

Our goal for supervised learning is to train a neural
network to distinguish 0*"-order beam profiles, la-
beled as “0”, from higher-order ones, labeled as “1”
(see Fig. 1). We manually classify more than 4,000
images into these two categories, and choose 2,000
Oth-order and 2,000 higher-order mode profiles as
our training data. Of these 4,000 images, 400 are
selected as the dev set. The test set consists of 200
images, with 100 images in each class.

Our neural network architecture, presented in
Fig. 2, is inspired by the VGG neural network [13].
However, we have simplified the original VGG net-
work because our image size is smaller and more
importantly, because our images contain simpler
features. This facilitates learning and allows us to
train the model within a few minutes. The modified
CNN contains six weighted layers, including five
Conv2D layers and one final fully-connected layer
before applying a sigmoid activation. Adam gradi-
ent decent and cross entropy loss are used for the
optimization process with a mini batch size of 32.
The training is done using the Keras API.

The training history is shown in Fig. 3. Based on
the dev set loss, we apply early stopping at epoch
27 (indicated by the brown dashed line). The model
trained at the end of this epoch has a train/dev/test
set accuracy of 92%. This is close to the human
labeling accuracy estimated in the following way:
we both labeled the same N = 857 images, and
found that ngy = 74 of them were labeled differently.
Thus, we estimate our human error to be around
na/N =~ 8%. Careful examination of these 74 images
leads to the conclusion that around 60 of them
are difficult to label as 0 or 1. Examples of such
images are shown in Fig. 4, where they either contain
a barely visible side lobe or have a central peak
which deviates from ideal Gaussian shapes. We
thus estimate that around 7% of the images are
ambiguous when labeling with human vision.
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Fig. 5: Percentage of the higher-order mode under
different beam parameters.

3.B. Results and discussion

With the trained model, we are able to calculate the
percentage of higher-order modes (label “1”) under
different electron/X-ray beam conditions. The re-
sults are plotted in Fig. 5, where the vertical axis
shows higher-order mode percentage and the hor-
izontal axis denotes electron bunch charges. The
four different colors represent four silicon crystal
reflections represented by the parenthesized num-
bers Si(hkl) (also known as “Miller indices”). The
order of crystal reflection can be calculated as
Vh?% + k% + 12, and the larger this number is, the
smaller the bandwidth of the X-ray photon energy.

From Fig. 5 we can see that, in general, higher-
order X-ray modes appear more frequently in higher-
order crystal reflections. Since increasing hkl means
decreasing window size on the X-ray bandwidth,
our results suggest that the 0*"-order beam profiles
from lower-order crystal reflections may actually
be the sum of higher-order modes lasing at differ-
ent X-ray energies within the bandwidth. This is
also confirmed by the decrease of the percentage of
higher-order modes with the increase of the bunch
charge using Si(800) reflection. However, the op-
posite is observed when we select a broader band-
width with Si(220), which suggests that some round-
shaped beams, especially those with low bunch
charge (80 pC) and high bandwidth (Si(220)), can
be the result of real 0*'-order Gaussian modes dom-
inating at lasing saturation.

Although we can already draw several conclusions
from the results above, there exist a few drawbacks
to this supervised training method. As mentioned
before, our human error in labeling these images is
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Fig. 6: Autoencoder neural network architecture.

Fig. 7. Examples of the input and output images of
the autoencoder.
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relatively large—around 7% to 8%. Moreover, since
we have a large dataset containing tens of thousands
of images, manual labeling becomes rather tedious
for the whole dataset. In addition, although humans
may be good at distinguishing the 0*"-order mode
from higher-order modes, we are not so good at
classifying among the latter. In particular, because
multiple peaks appear in these higher-order modes,
the relative position and intensity of the peaks may
contain significant information but are difficult to
determine and classify using human vision. All of
the reasons above point to the use of unsupervised
learning, which constitutes the second part of our
project.

4. Unsupervised learning

4.A. Autoencoder architecture and training

As discussed above, unsupervised learning is a great
tool to address the ambiguity in labeling and utilize
the large available (unlabeled) dataset. It allows
for automatic learning of image feature extraction
and significantly reduces the data dimension, thus
facilitating further analysis. Inspired by [14], we use
an autoencoder network for unsupervised learning.
The architecture is shown in Fig. 6. The neural
network can be separated into two parts: (1) the
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(a) PCA results showing 2D embedding of the
32-dimensional vector “codes”.

(b) Beam profiles picked randomly from each bin on the
2D map.

Fig. 8: Visualization of beam profiles on the 2D
map.

“encoder” part, which uses several fully-connected
layers to gradually reduce the (100 x 100 x 1 =)
10,000-dimensional input to a 32-dimensional vector
“code”, and (2) the “decoder” part, which mirrors
the “encoder” and gradually increases the dimension
to 10,000. When training this model, we force the
output to be the same as the input. After training,
we use the trained weights to obtain the values in the
“code” layer for each input image. The extracted
features of each of the 32 codes are shown in A.3.

The autoencoder network is trained on all 76,800
images, with a minibatch size of 64. We find that
training one epoch is sufficient to obtain desired
results.
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(a) Density map of beam profiles at different bunch
charges.
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(b) Density map of beam profiles at different number of
undulators.

Fig. 9: Density maps of beam profiles for various
electron bunch parameters. Each dot represents
one beam profile, and 4800 beam profiles are used
for each condition.

4.B. Results

To visualize the 32-dimensional “code” for each
beam profile, we use principal component analy-
sis (PCA) to further reduce its dimension to two. In
order to understand this 2D map, we show in Fig. 8a
the distribution of our pre-labelled data used in su-
pervised training. Because we are plotting equal
amounts of data (2000 each) with label “0” and “17,
the density distribution reflects that higher-order-
mode images cluster in the upper left corner of the
2D space. This is confirmed by dividing the 2D
map into smaller bins and observing that images



which fall into the same bin share similarities, while
images from different bins contain different features.
One example is shown in Fig. 8b (see Fig. A.1 for 20
more examples), where we plot a randomly picked
image from each bin. This demonstrates that our
autoencoder network has learned to recognize the
important beam profile features, such as beam size,
the number of lobes, intensity level, beam center
location, orientations, etc.

Now that we know how these features are encoded
in the 2D mapping, we can obtain more information
on the X-ray beam profile than a mere percentage
in Fig. 5. We illustrate in Fig. 9 two such exam-
ples, where Fig. 9a uses the same profile data as the
cardinal red bar in Fig 5. While we have already ob-
tained from supervised learning that the percentage
of higher-order modes drops with increasing num-
ber of undulators (33%, 28%, 15% for 20, 24, 32
undulators, respectively), the density plot in Fig 9b
provides further information: the dots are inclined
to scatter downwards with the increase of undula-
tors, suggesting that the y axis of this 2D space
(with positive direction pointing down) corresponds
approximately to the time axis of the lasing process.

5. Conclusion and future work

Both supervised and unsupervised learning are used
to categorize X-ray beam profiles. For supervised
learning, a 6-weight-layer CNN is trained on 4,000
human-labeled images to separate 0'-order beam
profiles from higher-order ones. The trained model is
then used to predict the percentage of higher-order
modes when different electron bunch parameters
and crystal reflection orders (X-ray bandwidth) are
selected. We find that higher-order beam profiles
appear more frequently when lower bandwidth is
selected. However, opposite trends are observed
with fixed bandwidth but varying electron bunch
charges.

For unsupervised learning, an autoencoder net-
work is built, where the hidden “bottleneck” (or
“code”) layer outputs a 32-dimensional code repre-
senting each input image. PCA is then used to
visualize these codes on a 2D map. We find that
positions on this map indeed encode features of the
beam profiles. This allows us to extract more in-
formation from the X-ray beam images, which can
be used for more sophisticated FEL analysis. Com-
pared with supervised learning, our unsupervised
learning model overcomes the difficulties in human
labeling, and allows for easy transfer of the same
architecture to similar analysis tasks.

However, we also note that this project is not
yet complete. Although our autoencoder network is
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able to find 32-dimensional representations of the
images, it may be possible to further reduce the
dimension with careful optimization of the archi-
tecture and evaluation of the interpretability of the
“codes”. In addition, although we are able to draw
qualitative conclusions from the 2D mapping of im-
ages, more work needs to be done to analyze the
codes quantitatively.
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20 examples of beam profiles picked randomly from each bin on the 2D map.
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Fig. A.2: Loss history in autoencoder training.
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Fig. A.3: Visualization of each component of the 32-dimensional code.

label = 28

label = 27




