Convolutional Models for Biomedical Image
Segmentation

Repository Link: github.com/frits-vp/cs230_finalproject

Alex Haigh, Frits van Paasschen, Joey Murphy {haighal, fritsvp, murphyjm } @cs.stanford.edu

Abstract—Identifying cell nuclei in microscopy images
is vital to new pharmaceutical developments. However, bi-
ologists lack a robust and efficient way to detect nuclei
due to natural variation in their appearances as well as
differences in image capturing methods. The Kaggle 2018
Data Science Bowl—the latest installation in an annual online
competition that leverages advanced data science for social
good—challenges participants to deliver a deep learning
model to the pharmaceutical research community that is able
to identify nuclei across a diverse and complex training set. A
successful implementation will aid researchers immensely in
their fight to find pharmaceutical solutions to medical crises
while saving both valuable research time and funding.

I. INTRODUCTION AND RELATED WORK

For more than two decades, researchers have recog-
nized the potential impact of machine learning to areas
such as biomolecular informatics and drug discovery
(Achanta et al. 1995). But only recently, with the
advent of deep learning and its broadening set of
applications, has there been significant interest and
attention given to the development of practical tools
for the pharmaceutical industry (Gawehn et al. 2016).
Furthermore, the advances in deep convolutional neu-
ral networks for computer vision—and specific to this
project, the development of the so-called “U-Net”
by Ronnenberger et al. in 2015-have made tractable
the process of biomedical image segmentation. The
confluence of these accomplishments has set the stage
for the emergence of a robust and efficient biomedical
image classification tool. Nuclei identification gives
researchers the ability to track the effects of different
drugs on afflicted cells, making such a network highly
valuable to the pharmaceutical industry. With the Kag-
gle 2018 Data Science Bowl, participants will tackle
the problem of using deep convolutional networks to
successfully identify cell nuclei across a diverse set
of images. Our submission to the competition will
build off of the successes of the U-Net architecture

to deliver an accurate, generalizable model for nuclei
identification in medical images.

II. DATASET

The training and testing data used is a collection
of cell images that vary across cell type, image mag-
nification, and imaging methods. For stage 1 of the
competition, the training data consists of 670 unique
raw images, while the test set contained 65 images.
The test images are unlabeled (we submit our predic-
tions to Kaggle for evaluation), but, for each training
example, there exists the raw image taken of a cell or
a group of cells, and a set of pixel masks that each
display the exact position of one cell nucleus in the
original picture. Each mask is unique, meaning that
there is no overlap between nuclei masks. An example
of a training pair can be seen in Figures 1 and 2.

Fig. 1: Cell Microscopy Training Example[5]

Fig. 2: Cell Microscopy Mask[5]

Fig. 3: Data augmentation. Left: Original image. Right: Image
after horizontal flipping and piecewise affine transformation.

Copies of this dataset can be downloaded on kag-
gle [5]. In addition, a comma-separated-value file of
run-encoded pixel values for each nucleus’ mask is
included in the dataset. The term run-encoded means
that, for some image, the run-encoded mask 1, 3 means
that pixels (1,2,3) are to be included in the final nucleus
mask. As output, we are tasked with generating these
values for an unseen set of data.

III. APPROACH
A. Data Manipulation

To train the model, we identified the smallest image
in the dataset (256 x 256) and resized all images to
that shape to ensure homogeneous inputs and allow
faster training; similarly, we converted color images
to grayscale to ensure that all training images had
the same format. While the majority of images had
white (or light, if color) cells on top of a black
(dark) background, some images had the reverse. So,
if an image had an average intensity We also used
the imgaug python library to augment our training
dataset.[6] in particular, we used three main kinds of
transformations (see Fig. 3 for example):

« Random horizontal flips (p = 0.5)

« Random vertical flips (p = 0.5)

« Random piecewise affine transformations. This
locally distorts images by placing a regular grid
of points on an image and randomly moving the
neighborhood of each point on the grid via affine
transformations. In particular, each point on the
grid is moved with a distance v (percent relative
to image size), where v is sampled per point from
N(0, z), where z € [0.01,0.04]

Finally, we converted the greyscale input image to a
FloatTensor with range [0, 1] and combined all of
the individual image masks into a single binary image
file. The first has the effect of normalizing the input,
and the second allows us to compute the Binary Cross-
Entropy Loss across an entire image’s segmentation
map to train the model, rather than based on individual
masks.

2

At test time, we resized the image to 256 x 256,
converted to grayscale, and (depending on the image)
inverted it before inputting it to our model. To generate
an output segmentation map the same size as the
cell, we resize the predicted map to the original size
of the image, then threshold. While we have some
success with this method, it is a significant source
of information loss that we should address in future
models.

B. Model

For the milestone, we began by extending an open-
source implementation of a U-Net in PyTorch that was
originally developed for the Carvana image segmen-
tation challenge.[4] As discussed in the introduction,
U-Nets are an appropriate model for semantic seg-
mentation because they combine high resolution, local
features from the “contracting path” with more global
features from the upsampled expansion layer.

Figure 3 displays the base architecture of this U-Net.
The layers of the U-Net are as follows. We begin with
a 3x3 Convolution and ReLU later, we then repeat a
2x2 max-pool and 3x3 convolution/ReL.U layer three
times, finishing with a final 3x3 convolution and ReLLU
layer. Then, we repeat this process, replacing each 2x2
max-pool operation with a 2x2 up-convolution that
reduces the number of feature channels, as described
in Ronneberger et al. Finally, a 1x1 convolution is used
as the final layer to decrease the number of channels
to give us our binary pixel mask.

While very similar to the U-Net introduced by
Ronneberger et al., our model architecture differs in
a few ways:

« We assume an input image size of 256x256
(though we have the same number of layers in
the U-Net

o We use ”same” 3x3 convolutions instead of valid
convolutions, allowing us to produce an output
segmentation map with the same size as the input.
To the same end, we pad our upsampled input to
match the shape of the corresponding contracting
path layer, rather than crop the contracting path
layer.

« Rather than treating the learning task as a multi-
class classification problem, our algorithm instead
treats it as binary classification (1 = cell, 0 =
not cell). So, the final layer is a single 1x1
convolution with sigmoid activation and a Binary
Cross-Entropy Loss function, rather than a soft-
max cross-entropy.

e In our initial model, we don’t use a weighting
function to enforce boundaries on nuclei.

input
image
tile

256 256

¥ o e
.-
ak k-

140

output
segmentation
map

=» conv 3x3, RelLU
copy and crop

H"\:"’E % ¥ max pool 2x2
& 3§ 1024 43 8 4 up-conv 2x2
\):1-; > E— =» conv 1x1

Fig. 4:

Fig. 5: Image post-processing using Otsu thresholding. Left:
Model output (with pixel values [0, 1]). Middle: Output after
applying Otsu thresholding. Right: Ground-truth mask. Example
of difference between output and ground-truth circled in red.

Additionally, the UNet produced a global probability
distribution - pixel [i,j] of the output segmentation
map represents the probability that pixel [z, j] in the
input image was part of a cell; however, the Kaggle
competition required the submission to be a discretized
set of cell masks. In order convert our segmentation
map into a set of masks, we first converted the map
to a binary global mask using Otsu’s thresholding
method.[8] Otsu thresholding (Fig. 5) converts images
with bimodal pixel intensity distributions into binary
masks by finding the threshold ¢ that minimizes the
weighted sum of intra-class variance between pixels
greater than ¢ and pixels less than ¢, then classifies
every M[i,j] > t as 1 (part of a cell) and every
MTJi,j] < t as 0 (not part of a cell). To produce
individual labels, we performed a simple BFS over
the binarized segmentation map and return every con-
nected component of 1’s as its own cell.

Finally, we extended the basic UNet with two differ-
ent architecture modifications to explore the response

Overview of the Architecture of the original U-Net [2]

Legend
‘ 3x3 2D convolution, BN + ReLU

‘ 1x1 2D convolution, BN + ReLU

UNet -1 Conv

256 x 256

‘ 1x1 2D convolution + Sigmoid

64 84 1 128 2 1

» = O » =

Base UNet

UNet +1 Conv

256 x 256

Fig. 6: U-Net architecture modifications.

of the final convolution layer in the expanding path
(Fig. 6). By modifying the final layer of the network,
we hoped to determine if our model’s learning was
either too shallow or too deep. Especially due to the
heterogeneous nature of the training and test data, it is
important that our model learns the general character-
istics of nuclei, but not the systematic remnants related
to standardizing the input images.

We train two additional models that alter the UNet’s
final convolutional layer. The first model adds an
additional two-dimensional convolution and ReLLU ac-
tivation before the sigmoid output. The second re-
moves the two convolutions and ReLLU activations that
immediately precede the sigmoid output.

Before evaluating any of the three models using
Kaggle’s evaluation metric, we conducted a hyper-
paramter search over learning rates, training each
model for 20 epochs. To search for a successful
learning rate, we randomly sampled for « in log-space
and evaluated each of the three models on the same

draws. For every learning rate, we recorded the best
IoU scores of each of the models after each epoch. We
determine our best model to be the one whose global
IoU score is lowest compared to other learning rates
and number of epochs. The learning rate used for our
final models is of the order o =~ 1075,

IV. RESULTS AND EVALUATION Fig. 7: Errors in our model’s mask prediction. Left:
. . Pre-processed training image. Middle: Ground-truth mask.
A. Evaluation Metric Right: predicted mask with notable systematic errors circled in

We evaluate our model on several metrics that red.
quantify model performance over our train, test, and
development datasets. The Kaggle competition refers
to its evaluation metric as an LB score, which quanti-
fies model performance by measuring the mean across
all test images of the average precision for each cell
nucleus detection. This precision can be calculated
over given a set of IoU thresholds and averaged across
the set of threshold values. For a threshold ¢ in a list .
of thresholds [0.5 — 0.95] (with intervals of 0.05), we entire dataset.
consider our model to be accurate at that threshold ¢

rate and number of training epochs that led to the
highest dev LB score. We then ran the selected models
to predict masks on the test set images and submitted
these masks to Kaggle for evaluation.

Using the metrics described above, we achieved the
performance shown in Table I aggregated over the

if the intersection over union (IoU) score: Model Dev Test
Accuracy | Precision | IoU LB LB

R YN ? Base U-Net 0.860 0.478 0.804 | 0.342 | 0.277

IoU(Y,Y) = A U-Net +1 0.931 0.451 | 0.786 | 0.337 | 0.265

Yyny U-Net -1 0.913 0460 | 0.797 | 0.321 | 0.274

meets or exceeds that threshold value. The Kaggle
competition defines a true positive as the model pre-
dicting a specific nucleus mask with an IoU score that
is greater than or equal to the threshold. Kaggle defines
the precision over a set of thresholds T of a predicted
set of masks Y with regards to a ground truth set of C. Analysis

TABLE I: Evaluation metrics

nucleus masks masks as Our results show significant promise, and at a basic
level, the algorithm “works,” as shown by the success

. 1 TP(t) of the first prediction in the figure about. However,
P(Y, masks) = m ; TP(t)+ FP(t) + FN(t) there are certainly flaws in our model that can be seen

in the second image, which has several artifacts. These

where the label is a set of masks masks and the jpclude masks that are conjoined because the margin

entire score is averaged over all threshold values. separating them is so thin (as well as questionable

labeling by the human since it’s difficult to see even

TP(Y,mask,t) = Z 1(IoU (nucleus, mask) > t)with the human eye where Fhe boundary is) as wal

as masks that leak information. Some have holes in

the middle, while others have finger-like projections

. . emanating from them or have been split into two
FN(Y,mask,t) = |mask| — (|Y — FP(t)) masks.

We think our errors come from a few major sources:

nucleus€Y

. 1) Input Data Processing and data heterogeneity:
FP(Y,mask,t) = Z 1(ZoU(nucleus, mask) < t) by resizing input images to 256 x 256, we by

nucleuseV definition lose information about the image that

could be valuable in predicting cell masks, es-

B. Results pecially since some of the input images have
To evaluate each of our three models we used the size up to 608x512. Converting 3-channel images

results from our hyperparameter search over learning to grayscale also lost information and may have

2)

3)

4)

been too naive of an approach, especially since
the input data came from a variety of different
microscopy techniques.

Image Postprocessing: Applying a single thresh-
old across the whole segmentation map was too
simplistic of an approach because it ignores the
fact that the probability of a pixel being a part of a
cell is highly conditional upon whether its neigh-
bors are. Additionally, the fact that images had
to be upsampled from 256 x 256 to their original
size at test time led to less accurate predictions
because of information loss (interpolation is less
accurate than predicting the mask outright).
Model Expressivity. For this task, the U-Net is
inherently limited by the fact that we need to
postprocess the output so heavily. Even though
we attempted different model architectures, their
relative efficacy (and therefore how expressive our
model is) is limited by the extent to which we are
able to successfully process our data - both pre-
and post- feeding the data into our model.
Differing dev and test distributions / model bias.
As the terms of the Kaggle competition stated,
the test set contained images using microscopy
techniques not seen in the (which, critically, had
different cell shapes and sizes as well as cam-
era perspective), and our algorithm struggled to
accurately predict masks for these images.

V. NEXT STEPS

Moving forward, we propose a few major revisions
to our model, targeted to address each of the short-
comings cited.

1)

Input Data Processing: To compensate for the
loss of information caused by shrinking cells to
256x256, we propose a few potential solutions.
One is to not resize images and train a model with
a batch size of 1, using a high 5;(~ 0.99) for the
Adam optimizer (an approach used by Ronneberg
et al.). To accelerate training, we could also group
images by size, though this would result in highly
correlated train batches since images usually with
the same size were often taken using the same
microscope, or randomly crop 256x256 segments
of larger images. Since the model is fully convo-
lutional, we could also simply not resize inputs
images at test time. Finally, in terms of dealing
with color vs. grayscale input images, we plan
to train a different input convolution layer for 3-
channel images, then use the same remainder of
the model.

2)

3)

4)

5

Image Postprocessing: To address the artifacts
in our output segmentation map, we need more
sophisticated postprocessing than a single thresh-
old applied globally. In particular, we need to
account for interdependencies between neighbor-
ing pixels, which our U-Net does not explicitly
do. We plan to explore the Watershed Algorithm,
which handles the image as a topographical map
(intensity of each pixel corresponds to its height)
and finds the lines that run along the tops of ridges
(i.e. cell boundaries); the boundaries can then
be filled in. We also would attempt hysteresis,
which applies a “double threshold” (s,t) to the
image, where every pixel (7,j) with intensity
> t maps to 1, (i,j) with intensity < s maps
to 0, and the mapping of intermediate pixels
is determined based on a BFS from other ”1”
pixels. Simpler techniques such as filling in holes
and removing masks with size | 10 pixels could
also help. Finally, running our U-Net on full-size
images would avoid the information loss caused
by upsampling.

Model Expressivity. With more sophisticated post-
processing, we might see the U-Net extensions we
made have a positive impact. We can also make
our model more expressive by trying larger filter
sizes at the highest level (which could help fill
some of the "holes” seen in cells in our output
image masks), learning the interpolation weights
when we upsample in the expansion path, and by
modifying our loss function to overweight border
pixels, which would force the algorithm to learn
the boundaries correctly/prevent conjoined masks
[the latter approach was used in the original U-
Net paper]. We would also experiment with mod-
ifying the learning task to a 3-class softmax clas-
sification problem where we classify each pixel
as background, cell, or border; postprocessing
would be simpler since we know the boundary of
the image. Finally, we propose using an entirely
different model architecture that is designed to
instance segmentation (Mask-RCNN) to avoid
postprocessing entirely and directly address the
competition goal.

Differing dev and test distributions / model bias.
To address the bias of our model towards the dev
set, we propose using heavier data augmentation
(e.g. stronger shifts in our affine transformations)
as well as acquiring additional data from other nu-
clei segmentation datasets and microscopy tech-
niques to help the model generalize. Not resizing
test images will also compensate for data loss.

VI. CONTRIBUTIONS

o Alex Haigh: Cleaned dataset, debugged and
adapted CS230 PyTorch vision code + Open-
Source U-Net to current task, and trained the
first model. Implemented data augmentation and
postprocessing, visualized U-Net output. Wrote
dataset, model, and next steps section; made first
pass at poster.

e Frits van Paasschen: Set up project requirements
on AWS and managed source control. Debugged
CS230 PyTorch vision code and setup GPU train-
ing. Wrote evaluation code. Wrote part of model
section.

e Joey Murphy: Authored or edited various paper
sections including abstract, introduction, model
extensions, hyperparameter search, and results.
Helped add figures and text to poster. Wrote and
integrated two U-Net model extension architec-
tures, conducted hyperparameter searching, and
trained the final models that were evaluated by
Kaggle.

(1]

(2]

(3]
(4]

(3]
(6]
(7]

(8]
(9]

REFERENCES

Achanta, A. S., J. G. Kowalski, and C. T. Rhodes. ”Artificial
neural networks: implications for pharmaceutical sciences.” Drug
Development and Industrial Pharmacy 21.1 (1995): 119-155.
Ronneberger, O., Fischer, P., Brox, T.. U-Net: Convolutional
Networks for Biomedical Image Segmentation (2015),
arXiv:1505.04597 [cs.C'V]

Gawehn, Erik, Jan A. Hiss, and Gisbert Schneider. "Deep learning
in drug discovery.” Molecular informatics 35.1 (2016): 3-14.
Pytorch implementation of the U-Net for image
semantic segmentation, with dense CRF post-processing:
https://github.com/milesial/Pytorch-UNet

Kaggle Data Science Bowl 2018. https://www.kaggle.com/c/data-
science-bowl-2018/.

imgaug: Image Augmentation for Machine Learning Experiments,
Alexander Jung. https://github.com/aleju/imgaug

PyTorch: An Optimized Tensor Library for Deep Learning using
GPUs and CPUs, http://pytorch.org/docs/master/

scikit-image: Image Processing in Python. http://scikit-image.org/
Hand Signs Recognition with PyTorch (CS230 Torch
Vision Code). https://github.com/cs230-stanford/cs230-code-
examples/tree/master/pytorch/vision

