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Abstract

The project represents a solution to the multi-class classification compe-
tition from Kaggle: "Planet: Understanding the Amazon from Space" using

convolutional neural networks (CNN) with Tensorflow.

1 Introduction

Deforestation contributes to reduced bio-
diversity, habitat loss, climate change,
and other devastating effects. Under-
standing the location of deforestation
and human activity on forests can help
governments and local authorities to re-
spond quickly and effectively.

The problem that will be investi-
gated is the Kaggle data-set from planet
lab: "Planet: Understanding the Ama-
zon from Space". Kaggle Competition.

Planet lab is the largest constellation
of Earth-imaging satellites and the ob-
jective is to correctly label 256 x 256
satellite images from the Amazon with
several labels from atmospheric condi-
tions, land cover, and use.

The current best model is a CNN
with 16 blocks. For each block, the ar-
chitecture is the following: 3x3 conv ->
batch norm -> relu -> 2x2 maxpool. The
last two layers are fully connected layers
and the loss function is a modified loss
function.

2 Previous Work

The project presented in the report
below has been previously solved by
other Stanford University students tak-
ing CS23IN. Their work served as a
starting point for the project. |5, 0].

Additionally, since the data-set is
available to online, other people has done
similar work in the past, and their expe-
rience was useful when trying different
architectures for the project.

The Kaggle blog has an interview
with the winner of the competition, and
it was used as reference. [2].

3 Data-set

The data-set consists of 40,479 training
images with labels and 61,192 test im-
ages with no labels (both in TIFF and
JPG format). Since there is no way to
validate the test samples (competition is
closed), the training images and labels
were divided into 90 %train 5% develop-
ment and %5 test sets and used for the
project. The TIFF images have lower
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quality, therefore, only the JPG images
were used.

Cloudy

Each image is of size (256, 256, 3),
with the channels representing R, G, B.

Figure 1: Example of Labeled Images (from the competition website)

3.1 Labels

Most of the images have several labels.
However, there is no guarantee that the
labeling is correct for all the images;
scenes may either omit class labels or
have incorrect class labels (detailed in
the data description of the competition).

A histogram of the label frequency
can be seen below.
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Figure 2: Histogram of Label Frequency
(starter code Kernel [3, 1])

As can bee seen in Figure 2, the data-
set is unbalanced. In many cases, people
could solve the unbalance by performing
data augmentation for the labels that ap-
pear less frequently. However, for the
Amazon Rain-forest Data-set, when an
image has an infrequent label, it is likely
that the image also has a frequent label,

making it almost impossible to reduce
the unbalance.

In order to proceed with the analysis,
it is important to know if the labels are
co-related to each other. The heat-map
below shows what percentage of the X
label also has the Y label.
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Figure 3: Co-occurrence matrix (starter
code Kernel [3, 1])

The label "primary", which is short-
hand for primary rain-forest, has the
highest proportion of labels.

It is interesting to note that each im-
age should have exactly one weather la-
bel, but the land labels may overlap. The
weather labels are: clear, partly cloudy,
haze, and cloudy, and the land labels are:
primary, agriculture, water, cultivation,
habitation. The co-occurrence matrices
plotted as heat map can be seen in the
appendices.
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4 Approach

The first step for this project was to
build a basic CNN that would be able to
train the model. Once a basic model was
working, the next step was to perform
data augmentation, try different archi-
tectures, fine tune and evaluate perfor-
mance.

4.1 Basic Model

The basic model for this problem is the
following:

1. Re-size the images from 256x256 to
64x64 for ease of learning (larger
images take longer to train).

2. Build a simple CNN with the fol-
lowing architecture: 3x3 conv ->
batch norm -> relu -> 2x2 max-
pool.

3. Add two fully connected layers at
the end.

4. Calculate the loss with sigmoid
cross entropy for the 17 classes.

The basic model was trained trying
to optimize accuracy.

4.2 Data Augmentation

Data augmentation included flipping, ro-
tating, and transposing images with ran-
dom probability.

Other data augmentation techniques,
such as adding brightness and saturation
to the images, were tried but some tech-
niques did not improve performance.

After the basic model was working,
and data some augmentation techniques
proved to be effective, a more complex
model was build. The main difference
between the more complex model and
the basic model was that several blocks

were added to the CNN, where each
block represents: 3x3 conv -> batch
norm -> relu -> 2x2 maxpool. Addi-
tionally, batch normalization and mo-
mentum, and Xavier initializer for the
weights, were used.

The results of the analysis with a
batch size of 32, 10 epochs, 16 chan-
nels, using batch norm and momentum
(B = 0.9) for different learning rates are
the following:

Table 1: Initial Results

Acc Loss
a=10"*10.947156 | 0.136272
a =102 1]0.950818 | 0.127826
a=10"?0.949481 | 0.129836

The initial results seem promising.
However, for the Amazon Rain-forest
Data-set, the most important evaluation
metric is the F2 score. The F2 score eval-
uation metric will be described below.

4.3 Metric - The F2 Score

The F2 score is a way of combining pre-
cision and recall into a single score — like
the F1 score, but with recall weighted
higher than precision. The kaggle com-
petition (when active) used the F2 score
as an evaluation metric.

The F2 evaluation is as follows:

N
5 PR,
F2=2%" 2
N;4P,~+Ri

where P, and R; represent the preci-
sion and recall for each example. How-
ever, since Tensorflow calculates the
precision and recall automatically, this
project uses a slight modification of the
F2 metric, defined as follows:

SPR

F2 —
4P+ R
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where P and R represent the average pre-
cision and recall over all training exam-
ples.

A visual description of precision vs
recall can be seen in Figure 4
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Recall = ——
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Figure 4: Precision vs Recall

One of the challenges of optimizing
for the F2 score is that lower losses don’t
necessarily lead to higher F2 scores.
Therefore, the models not only need to
predict the label probabilities, but also
select the optimum point to determine
whether or not to select a label given its
probability.

F2 penalizes false negatives more
heavily than it penalizes false positives.

4.4 Loss and Regularization

Once the model was evaluated on the F2
score there was a significance decrease in
performance. For that reason, the next
technique was to change the loss function
of the model.

The idea was to create a loss that
would penalize miss-classified predic-
tions of positive labels more heavily.
Therefore the new loss function was de-
fined as follow:

L = —y x log(sigmoid(y)) * weight—

(1 —y)log(1 — sigmoid(9)) + A|w|?

weight > 1 increases the recall.

Note that regularization was also
added, but not always used. Regular-
ization was added because on some ex-
periments there was a significant gap be-
tween training, testing, and evaluating
results.

Before applying the new loss func-
tion, the result from the more complex
model with the a learning rate of 1073
has the following recall, accuracy, and
F2 score:

Recall
0.8187

F2
0.831

Precicion
0.8813

Loss
0.1278

The results with the new loss function
will be described in the next section.

5 Results

The synthesis of some of the experiments
can be seen in the Table 2.

It is important to note that several
values for the weight of the loss were at-
tempted, and it is evident that the re-
defined loss was able to improve the re-
call significantly. However, there is a
trade-off between precision and recall to
increase the F2 score.

Finding the optimum point for the
trade-off between precision and recall
yield our best model.

Table 2: Synthesis of Results
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Experiment recall | accuracy | precision | loss | F2
1 | Preprocess 0.805 0.952 0.898 0.123 | 0.822
2 | Loss weight; 5 0.758 0.935 0.841 0.659 | 0.773
3 | Loss weight, 0.888 0.935 0.766 0.721 | 0.860
4 | Loss weightg 0.961 0.896 0.624 0.897 | 0.867
2 | Loss weight,s(BestRegularization) | 0.929 0.868 0.722 0.937 | 0.884
5 | Loss weightg, 0.967 0.813 0.473 1.370 | 0.800
6 | Resnetys 0.882 0.902 0.656 0.977 | 0.825
7 | Resnetsy 0.888 0.862 0.556 1.016 | 0.793
8 | Resnets 0.869 0.900 0.653 1.103 | 0.815
3 | Resnetyo; 0.940 0.924 0.705 0.774 | 0.882

*The results in the table above correspond to different fine tuned models, and only the
best performing results are on display. Disclaimer: Additional models were trained after
the poster presentation, so the table of results may vary. Specifically, better parameters
of regularization for certain models were attained.

5.1 Resents

Once we had our best performing model
in place, an additional effort was made to
try to compare the results from our archi-
tecture to architectures that have proved
to be useful in image recognition. For
this purpose, several configurations of re-
sents were tried and the results are also
in Table 2 ! [7]. Hyper-parameter tuning
was only performed for Resnetiy; which
gave us the second best result.

6 Discussion

When fine tuning a CNN, or any other
deep learning model, it is important to
remember what is the metric that we are
trying to optimize.

In our specific case, although the
initial results seem promising, when
changing the metric the performance de-
creased.

Changing the loss function signifi-
cantly improved the results. However,
there was a trade off that was achieved
after several iterations and fine-tuning.

From previous work, Resnets ap-
peared to have worked better for other
people in similar work. Nonetheless,
in my case, simpler models outperform
more complex models. Additional work
could be needed to fine tune the resnets,
or sometimes simpler models might work
better.

7 Future Work

Future work for this project includes try-
ing and fine-tuning different CNN ar-
chitectures such as DenseNets, and re-
visiting Resnets. There is always room
for improvement in deep learning prob-
lems.
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