Coordination of Distributed Energy Resources
without Power Grid Models using Reinforcement
Learning

Thomas Navidi
School of Electrical Engineering
Stanford University
Email: tnavidi@stanford.edu

Abstract—In this paper, I explore the implementation of a
deep deterministic policy gradient (DDPG) learning agent to the
domain of controlling distributed energy resources in a distri-
bution network. This domain has traditionally been dominated
by optimal control strategies such as [1], but these strategies
can be slow for very large power networks, and they all require
the knowledge of grid parameters, which is often unobtainable
in practice. The usage of DDPG allows the storage units to
learn a policy which minimizes electricity operating costs through
performing energy arbitrage, and promotes network reliability by
charging or discharging power to balance the system. These two
features are key to promoting the increase of renewable energy
generation. This work is an extension of my previous quarter’s
CS-238 final project which aims to solve the same problem.
This paper builds on that work in 4 key ways: (i) expanding
the state and action space to consider an entire day’s worth of
data. (ii) Training the actor and critic networks with labeled
data in a supervised learning approach before performing the
DDPG algorithm. (iii) Data augmentation was used in training
to increase the number of examples to cover a broader range of
possibilities. (iv) Most notably, the rewards were generalized to
fit any price or power grid structure. These generalizations of
the capabilities of the learning algorithm were realized without
a loss in performance.

I. INTRODUCTION

A grand challenge of the future electric grid is how to
best coordinate distributed energy resources (DERs) to achieve
grid reliability while allowing renewables to ultimately re-
place fossil fuel sources. Coordinating millions of connected
devices in the real world, however, is challenging due to a
combination of cyber-physical constraints including electric
power grid physics, device communication delays, and data
privacy concerns. My previous work has demonstrated the
capabilities of a two-layer model predictive control (MPC)
architecture that coordinates DERs while respecting these
constraints [1]. However, this algorithm requires a model of the
physical distribution grid, which is often unavailable in the real
world, and involves the computation of a lengthy optimization
problem, which can take long for large power networks.
No known algorithms are able to effectively manage grid
reliability through coordination of DERs without knowledge
of the grid; however, my final project will attempt to learn a
policy for control of DERs without having knowledge of the
grid. Execution of this policy will also be much faster than
the computation of an optimization problem.

II. PROBLEM FORMULATION

In the problem, there are thousands of homes connected
together by the grid, and several of these homes are equipped
with rooftop solar arrays, and controllable battery storage de-
vices. The battery storage devices can charge, which increases
net power consumption, or discharge to decrease net power
consumption. The power consumption of homes across the
grid affects the voltages at each home and can cause them to
become too high or too low. Therefore, it is up to the battery
storage devices to adjust the net power of each home in a way
that ensures voltage is within operating bounds. Unfortunately,
when the power grid structure is unknown, the effects of the
power demand on grid reliability are also unknown. They can
only be known by taking measurements on the system after the
battery storage decision has been determined. This problem
can be framed as a reinforcement learning problem, where
battery charging decisions will be made, and the implications
of those actions will be determined and effect future decisions.
In order to avoid confusion, neural networks will be referred
to as neural nets or network, and the power network will be
called the power grid or grid.

A. State and Action Space

The state and action space for our reinforcement learning
problem are both in the continuous domain with the power
demanded throughout the grid as the state, and the power
charged or discharged by the battery as the action. Each node
in the grid consumes power that varies throughout the day,
which is discretized hourly to make 24 points in a day. Each
node and daily power profile are vectorized to make a vector
of length 24N,,,4es Where Ny o4es is the number of nodes in
the power grid. This is the state vector because the power
demanded in each hour is what determines the voltage levels.
The action vector is the daily battery charging power profile.
This vector has a length of 24N orqge Where Ngiorage 1S
the number of storage nodes in the power grid. This is an
improvement over the previous implementation where only a
single hour was considered at a time for two main reasons.
First, when considering only a single hour, actions must be
greedy because future states of the system are unknown. In this
problem, greedy actions perform significantly worse than those
that consider a broader horizon. Second, the state of charge

. 200 /--o-\-.-.
e
S 150
=~
v
v 100
2
a
50
0
0 5 10 15 20 25
Hour in Day

Fig. 1. Time of use prices throughout the day

of the battery does not need to be included as one of the state
variables, since the battery can easily complete a cycle over
the day and return to the same state of charge. In the previous
implementation the state of charge was included to prevent
the storage units from charging while full or discharging
while empty. This simplifies the problem and generalizes the
capability of the controller. The use of data augmentation and
supervised learning enabled the expansion of the state and
action space without loss of performance.

B. Objective

There are two metrics of success to optimize over when
choosing the best charging strategy. The first objective is to
minimize the cost of electricity. This is done through energy
arbitrage, which is buying electricity at a low price and selling
it at a high price. Buying electricity occurs when the storage
unit charges power from the grid, and selling occurs when the
unit discharges power onto the grid. The value of arbitrage
profit is shown in equation (1) where p is the vector of
electricity prices throughout the day and w is the vector of
battery charging and discharging. Figure 1 shows the price
structure used for this paper; however, any time varying price
structure would work.

ARB = pTu (1)

The second metric of success is related to the electric power
quality, particularly with respect to voltage variations, which
occur when the voltage magnitude at any house, substation,
or other node in the network is above or below the nominal
voltage by greater than 5 percent. This metric is meant
to support grid reliability. The penalty metric for voltage
violations for a single node and time step is the sum of squared
deviations of the voltage from the 5 percent bounds.

Time is discretized over T time steps and is indexed by
t € [1: T]. Each node in the network is indexed by ¢ € [0 : N].
Equation 2 gives the formulation where Vj; is the per unit
voltage at node ¢ and time ¢. Figure 2 shows the metric for a
single bus and time step. The choice for this metric reflects our
desire to curb voltage violations caused by the introduction of
RDGs.

3.50E-03

3.00E-03

2.50E-03

2.00E-03

1.50E-03

1.00E-03

Squared Voltage Deviation

1.045
5.00E-04

0.00E+00

N-0-0-0-000 00

0.85 0.9 115

Voltage

Fig. 2. Lack of electric power quality metric measured as squared voltage
deviations

N T
> (max(Vi; — 1.05,0) + max(0.95 — Vir,0))* (2)
=0 t=1

K3

These two metrics can be combined to create a measure of
total performance as shown

N 24
150 Z Z(max(‘/i‘r - Vvtol—!—v O) + max(‘/tol— - Vvirv O))2

1=0 7=1
€)

Equation (3) will be used as the reward function for the
critic network throughout the learning process. This extends
on my previous work by providing a single constant reward
function to the learning algorithm regardless of the underlying
price structure. My previous project hand tuned the reward
function hourly in order to take advantage of human known
features of the price structure. This generalized formula is
an improvement because it allows the networks to learn on
any price structure. By incorporating data augmentation and
supervised learning this generalization comes at no cost to
performance.

Finally, the total performance metric will be compared to an
optimal controller where the network topology and all other
variables are known ahead of time. Also, the performance
can be compared to a system that does not incorporate
coordinated control where each battery only performs its own
local optimization. This is the baseline heuristic that will be
used for supervised learning as described in the next section.
The system will hopefully be only slightly worse than the
fully deterministic optimal case, and much better than the
uncoordinated case.

C. Case Study

The distribution grid experimented on has 7 nodes with 4
houses, a transformer, a commercial building, and a substation.
One of the houses has a rooftop PV system and a battery
storage system. The solar data was obtained from an NREL
dataset and scaled to match typical rooftop PV systems, while
the building demands were obtained from PG&E. The battery
storage charging and maximum capacity were chosen to match
approximately the capabilities of the Tesla PowerWall 2 for
realism.

III. INITIAL SUPERVISED LEARNING

In order to give the random exploration process a solid
starting point when searching for battery charging profiles,
the actor network was trained using supervised learning before
starting the DDPG reinforcement learning algorithm. However,
there are 2 major challenges involved with acquiring and
labeling data for the supervised learning approach.

A. Data

The first challenge comes from acquiring a sufficient amount
of data. The dataset I received comes from a PG&E database
containing the power demanded of thousands of homes over
the course of 5 months recorded at an hourly time resolution.
Unfortunately, 5 months of data only provides 150 days, which
is not enough training examples to train our neural net to
have sufficient generalizing capability. Therefore, the data was
augmented by adding Gaussian random noise with 0 mean and
standard deviation equal to 20% of the original datas standard
deviation. This noise provides a realistic representation of
actual power data, which varies approximately within this
range. After data augmentation, the total number of training
examples is 15000 days. The 150 days of actual data are split
into 75 days for dev and 75 days for testing.

The second challenge involves labeling our data with the
optimal control strategy. Since the optimal algorithm in [1]
takes too long to compute for large power grids, I must use a
heuristic to develop the control strategy for the training data.
Also, I want to avoid using the power grid models, which are
needed to run [1]. Fortunately, there is a heuristic method that
runs quickly and does not use any grid parameters to run. The
heuristic maximizes arbitrage profit, but mostly ignores volt-
age violations. This is able to achieve performance somewhat
close to optimal. The training data will be labeled with the
output of the heuristic control algorithm, and reinforcement
learning will push performance of the heuristic closer to the
true optimal.

B. Training and Performance

The goal of the initial supervised training is to train the actor
network to imitate the heuristic controller. The neural net is
a fully connected feed foreword architecture with 2 hidden
layers and an output layer. The 2 hidden layers have 100
and 50 units respectively. The activation function chosen is
the exponential linear unit due to its shown ability to train
faster for deep networks than the rectified linear unit [2].

The output layer has 24 units with an activation function of
tanh. This activation was chosen because the battery control
power is bounded between -1 and 1 where 1 represents
maximum charging power. The network was implemented as
a fully connected architecture instead of an RNN since all
future data is considered in the input, and the input space
is not prohibitively large. The loss function chosen is the
mean squared error or 12 norm between the output and the
heuristic charge profile. There is also a 12 regularizer to
prevent overfitting to the training data, which consists entirely
of augmented data. The regularization hyperparameter was
tuned to 0.1. The optimizer is the Adam optimizer due to
its robustness and speed. The learning rate was selected to be
0.0001. The neural net was trained over 4000 epochs. The code
was implemented in Python using Tensorflow. Table I shows
the final mean squared error loss on the 3 sets after training.
It also shows the performance for the metrics compared to the
optimal and heuristic controllers when evaluated on the real
data in the dev and test. Clearly, the actor network is able to do
a good job of imitating the heuristic controller, partially due to
the simplicity of the heuristic control strategy, which is often
the same for many data points. The dev and test mean squared
error are lower than the training error because the training data
is made of augmented data from the dev and test sets, also,
the regularizer has done a good job of preventing over fitting.
When evaluating the 3 performance metrics the actor network
does an excellent job of mimicking the heuristic, but there is
still a lot of room for improvement before reaching optimal
performance.

TABLE I
MEAN SQUARED ERROR FOR TRAINING THE ACTOR NETWORK AND
OVERALL PERFORMANCE OF THE ACTOR NETWORK

Set Mean Squared Error

Train 5.702E-4
Dev 2.154E-4
Test 1.99E-4
Method Arbitrage Voltage Total
Neural Net 209.414 0.864 -24.893
Heuristic Control 209.992 0.878 -26.704
Optimal Control 209.577 0.295 60.539

Figure 3 show a sample output from the actor network
along with the charging action from both the heuristic and
optimal controllers. Here we see the actor is able to mimic
the heuristic, but there is still a noticeable difference from
what is considered optimal.

IV. REINFORCEMENT LEARNING

The next step is to improve the actor network using a
reinforcement learning approach called deep deterministic
policy gradients (DDPG) adapted from [3]. This is an actor-
critic method for continuous state and actions spaces. This
paper takes the deterministic policy gradients method from [4]
and applies deep neural networks and other recent advances
to ensure the neural network training process is stable. The
recent advances to make stable Q networks are adapted from

--- Neural Network
4 e Heuristic
—— Optimal

Fig. 3. Sample charge profile output from the actor network compared to the
heuristic and the optimal controller.

[5] where a deep Q network is used to train an agent to play
Atari video games. The two novel advances are the usage of
separate target networks to get the target value of the next
state when training the main Q-network, and the use of an
experience replay buffer to reduce correlation between training
examples for the Q-network.

A. Critic Network

A second fully connected neural network was used to
implement the critic portion of the DDPG algorithm. The critic
takes as input both the state space, like the actor network, and
the action space from the actor network. The output is a scalar
value for that state action input pair. The first hidden layer
for the state space input is made of 100 units and is shared
with the first hidden layer of the actor network. This helps
training because the features extracted from the state space are
useful to both the actor and critic networks. Another hidden
layer of 50 units is used for the action space input. These
two layers are concatenated and connected to another hidden
layer of 25 units. Each hidden layer his an ELU activation
function. The output layer is made up of a single unit with no
activation function for predicting the value. The loss function
minimized was the mean squared error between the label and
the predicted value. Also included was a 12 regularizer with
a hyperparameter of 0.1. The Adam optimizer was used for
training with a learning rate of 0.001.

Before starting DDPG, the critic network is trained using
supervised learning similarly to the actor network. The aug-
mented data is used as input to the actor network which makes
a prediction on the action to take in that state. These state
action pairs are used as the input training data. The label is the
value of the total performance metric (3) for the corresponding
state and action. I assume that each day is a terminal state
since the storage units return to the same capacity at the end of
the day. This dramatically simplifies the value function, which
helps improve training. Immediately after the critic network is
trained, the DDPG algorithm begins.

B. DDPG Implementation

The main loop of the algorithm begins with the observation
of the initial state. The state is fed to the actor network which
gives an action and noise is added to this action from a random
exploration process. This new action is executed by the storage
units, and the reward is observed from the environment. The
state, action, and reward tuple is stored in the experience replay
buffer. Then, M = 256 tuples are randomly sampled from the
experience replay buffer and used as a batch to train the actor
and critic networks. However for the first 20000 training steps,
the actor network is not trained because it has already been
trained to mimic the heuristic controller. The critic network
needs to learn of unvisited states through random exploration
before it can be used to train the actor network. Otherwise,
the actor network performance will deviate from the heuristic
controller in an undesirable way

C. Exploration Random Process

The exploration random process chosen was an Ornstein-
Uhlenbeck process as in the DDPG paper to generate noise
that is correlated in time and provides exploration efficiency in
physical control problems with inertia. This takes advantage
of the fact that our system has inertia in the state of charge of
the battery systems. It was found to perform better than an in-
dependent identically distributed Gaussian random processes.
The exploration random noise was weaned down linearly
over the first 30000 training steps. Training continued after
exploration stopped to allow the networks to finish training.

D. Results

After 40500 training days, the actor network was able to
output a charging policy that performed substantially better
than the original heuristic controller. Table II shows the
best achieved performance compared to the heuristic and the
optimal controller.

TABLE I1
MEAN SQUARED ERROR FOR TRAINING THE ACTOR NETWORK
Method Arbitrage Voltage Total
DDPG Actor 175.000 0.449 20.035
Heuristic Control 209.992 0.878 -26.704
Optimal Control 209.577 0.295 60.539

Figure 4 shows a sample new actor output compared to the
heuristic and the optimal controller. On hour 8, it can be seen
the actor learned to discharge there in order to avoid a over
voltage penalty. This learning is due to the random exploration
process added to the heuristic that achieved better performance
on that day.

V. CONCLUSION AND FUTURE WORK

In conclusion, the reinforcement learning agent is able to
reduce some of the voltage violations without any knowledge
of the power grid. This is simply unachievable using an
optimal control approach. However, many more case studies

--- Neural Network
4 e Heuristic
—— Optimal

Fig. 4. Sample charge profile output from the actor network after training
with DDPG.

and much larger networks with several storage units will have
to be tested to confirm the success of the DDPG algorithm in
this domain.

There is much future work to be done to refine the reinforce-
ment learning approach for controlling battery storage systems
in a distribution network. Perhaps the biggest improvement
could come from using a more complex exploration strategy.
For example, using information about the time a voltage
violation occurs as well as whether it was an over or under
voltage could inform the direction of exploration. This could
improve performance and reduce the number of examples
needed before a successful strategy is found. Another problem
to be addressed occurs during training when the policy would
sometimes suddenly perform very poorly after learning a
good policy. This is known to occur in deep learning and
can be mitigated by using trust region policy optimization as
described in [6]. Additional work involves testing much larger
networks. However, there are many challenges associated with
expanding the state space. Particularly, the amount of training
examples needed to express a representative set of possible
states increases dramatically.

VI. CODE

Link to Github repository:

https://github.com/tnavidil/cs230final.git

Data files are not included in the repository. Code adapted
from github user IgnacioCarlucho for DDPG implementation
of Mountain Car from Al gym.

REFERENCES

[1] K. Anderson, R. Rajagopal, and A. E. Gamal, “Coordination of distributed
storage under temporal and spatial data asymmetry,” IEEE Trans. on
Smart Grid., 2017.

[2] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate deep
network learning by exponential linear units (elus),” Int. Conf. Learning
Representations, 2016.

[3] T.P Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, “Continuous control with deep reinforcement learning,”
International Conference on Learning Representations, 2016.

[4] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller,
“Deterministic policy gradient algorithms,” International Conference on
Machine Learning, 2014.

[5] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, and et. al., “Human-
level control through deep reinforcement learning,” Nature, 2015.

[6] J. Schulman, S. Levine, P. Moritz, M. Jordan, and P. Abbeel, “Trust region
policy optimizatin,” International Conference on Machine Learning,
2015.

