Deep Tomato

Leslie Tu, Petra Grutzik, Kate Park
Department of Computer Science
Stanford University
leslietu/pgrutzik/katepark@stanford.edu

Abstract

We predict Rotten Tomato movie critic ratings by extracting movie posters and
text meta data from movie profiles and feeding these visual and text-based features
into a deep neural network. In this paper, we scrape and parse Rotten Tomato
movie profiles to build a dataset of 19 thousand movies and their information
including poster images, descriptions, title, genre and Rotten Tomato critic rating.
We compare several models including a text-feature based LSTM with GloVe
vectors, AlexNet, custom Conv2D and combined LSTM-Conv2D model. We find
that our combined model performs best at a test accuracy of 66.87 percent narrowly
beating our LSTM at 65.61 percent test accuracy.

1 Introduction

Before sitting down to watch a movie, we often check its critic rating as an evaluation of the movie’s
greatness. If there is no critic rating, we can judge a movie by glancing at its poster and reading
information about the film such as its title, genre, and description. With this information, we can
predict that Forest Gump will be a great movie and Fifty Shades Darker will not be as compelling.
Given thousands of movies produced annually, we ask whether we can build a model to determine
movie critic rating based on movie profiles using neural networks.

In building our model we will use visual features, the colored movie poster, and textual information:
title, description, and genre of a movie to predict whether a movie has over or below a 70% Fresh
rating on RottenTomatoes.com. The Fresh rating is the percentage of critics who gave it a "thumbs-up"
and the threshold of 70% ensures our classification is roughly 50-50 split across two bins.

2 Related Work

Several papers have tackled the challenge of learning meaningful information from movie posters
or book covers. Kjartansson (2017), Kuprel (2016), and Libeks (2011) are a few papers that predict
movie, book or album genre based on image analysis. Kjartansson judged book genre from a book
cover and the title in text form using a deep CNN with 20,000 samples. Kjartansson achieved 80-90%
accuracy in the combined image and text model, concluding that text features mattered more than the
cover artwork, suggesting we will need to focus on textual features in addition to the poster.

While most examples in literature are classification tasks predicting genre, we propose predicting
a rating. There is also a class of papers (Morovic (2011), Hsu (2014)) predicting user ratings for
movies based on content or collaborative methods by using ratings of similar users. However, this is
less relevant for our task at hand which attempts to predict a collective score across all users rather
than make a movie recommendation for a particular user.

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

Sun (2016) approaches a similar problem of predicting movie rating, fitting a Random Forest
regression on 5 thousand movies from IMDB and finds that the number of faces in a movie poster has
anon-neglectable effect to the movie rating. Sun’s final model has a mean squared residual of 0.89023.
While fitting a regression would be more relevant, we approach the problem as a classification task
(see Section 5) with a larger dataset of 19 thousand movies from Rotten Tomatoes.

Alex Krizhevsky (2012) classified images using a new convolutional neural net structure now known
as the AlexNet. Krizhevsky et al. achieved top-1 and top-5 error rates of 37.5% and 17.0% which
was quite better than previous state-of-the-art image classification models. This image classification
network could be a promising framework for detecting specific features that differentiate images from
each other. This ability could be useful for detecting features that differentiate posters of "Fresh"
movies from posters of "Rotten" ones.

3 Dataset and Features

Our dataset comes from the Rotten Tomatoes website (http://www.rottentomatoes.com), which
has about 19 thousand usable movies (21 thousand movies did not have Fresh rating). Figure 1 shows
an example of a movie input.

title poster description genre pgrrgsezﬁl d
An Amazon princess
(Gal Gadot) finds her Action
idyllic life on an ’
: : Adventure,
island occupied only
Wonder . Drama,
by female warriors . 92
Woman . Science
interrupted when a Fiction
L pilot (Chris Pine) Fatifas i
s il crash-lands nearby. y
After rescuing him...

Figure 1: A sample movie input.

We used an 80/10/10% split to get 15,648 training examples, 1,957 dev examples, and 1,957 test
examples.

Title and genre were our text features (we experimented with description, but it hurt our performance),
and we used pre-trained GloVe vectors to encode the words.

For the images, we resized them to 224 x 224, randomly brightened and saturated them, and clipped
them within the usual range. We kept the colors, so we had 3 channels. After our model started
over-fitting the train set, we introduced data augmentation by horizontally flipping the images.

4 Methods

We approached our problem of classifying movies with text models, image models and finally a
combined model.

Initially, we approached the problem as a regression using mean squared error as our loss, however
this was difficult to train (our dev mean squared error was 887 after training on 4K movies or about
30% off an average) and thus we moved towards a classification task. We attempted using the
suggested ten equally sized bins of scores and softmax cross entropy loss. However cross entropy
loss did not accurately capture the problem since the bins were not independent (classifying a movie
into one bin when it was supposed to fall into the adjacent is not horrible). This fact combined with
low performance on 10 bins motivated us to simplify the problem into a 2 bin classification task
which we will use for the rest of the paper.

4.1 Text Model

Our first attempt at processing the text features used a 4 layer neural network, representing words
as n-gram counts. We quickly abandoned this model for more standard natural language processing
techniques. We represented words using pre-trained GloVe vector representations. We fed these word
embeddings into a Long Short-Term Memory (LSTM) network to preserve word ordering of movie
titles and descriptions. We zero-pad our word sequences to the length of the longest input, propagate
the embedding layer through 3 LSTM layers each with 128 hidden units and conclude with softmax
activation.

Our loss was cross-entropy, given by —(ylog(p) + (1 — y)log(1 — p)), where p is the predicted
probability and y is the true one-hot class vector.

Due to overfitting, we introduced dropout with keep probability of 0.4 after the first LSTM layer and
0.3 for the next two layers. We trained with the Adam optimizer with a minibatch size of 512 and
learning rate of 0.001.

4.2 Image Model

We tried two models to learn on the posters. The first was AlexNet, and the second was a slightly
smaller convolutional network. AlexNet did not work well for our problem, so we continued
customizing our the second model.

Our final model starts with a 3 x 3 convolution with 16 channels, a stride of 1, and valid padding,
followed by a max pool with stride 2 and padding 2. We repeat this block three more times, with the
number of channels doubling each time. Then, we flatten the tensors to 25088-dimensional vectors
and run them through two fully connected layers. Finally, we use softmax to get a 2-dimensional
output where the entries indicate the probability of the class.

Our loss function was also cross-entropy.

We ran into over-fitting problems, so we added dropout with a keep probability of 0.8 in the fully
connected layers. We trained with the Adam optimizer with a minibatch size of 512 and a learning
rate of 0.001.

4.3 Combined Model

After training the text and image models, we linearly combined the softmax output layer. We freezed
the weights in each model, extracted the 2 x 1 softmax outputs of each, and used a weighted average
QUpert + (1 — a)vimage to produce the final prediction. We tuned the optimal weight « on the train
set. Our final o was 0.6.

Figure 2 shows our combined model architecture.

5 Results and Discussion of Various Models

Figure 3 shows our results for various models. Accuracy is the percentage of predictions that were
correct. We used this metric since our classification problem purposefully divides the dataset into
two equal sized bins: above 70 or below 70 fresh rating. Figure 4 shows how our metrics for text and
images changed over training epochs.

5.1 Text Model

The final GloVe vector LSTM on movie titles and movie genres performed surprisingly well with a
train accuracy of 69.37% and test accuracy of 66.51%. To achieve this performance, we pulled out
movie descriptions from our inputs because the feature drastically slowed down training and hurt
performance. Using both movie titles and move genres works best (movie genre without title leads to
64.8% accuracy on train).

Due to overfitting on the train set as shown in 4, we used early stopping at 17 epochs when the dev
loss was lowest.

LSTM

Dropout
Iy

‘ Softmax

)

LSTM

T

Dropout

¥

LST™M

g
>3
H

Dropout
T

Dropout
Iy

“ LSTM

\

|
Compont |

4
LSTM ‘

¥
Embedding ‘

f

Wonder

CONV
IMAGE
DATA
224x224x3

CONV

Embedding

Woman

T
Dropout
T

> LSTM

¥

Embedding
T

Adventure

MAX

POOLING ROV,

112x112x16

MAX
POOLING

CONV

MAX
POOLING

LSTM

T

Dropout ‘
¥

> LsTM

T

[Embedding
7

Fantasy

56 x 56 x 32

MAX
POOLING

FLATTEN

|

‘ LSTM —>

Linear ‘ > y_pred

FC FC

28x28x64

14x14x128

25088x1 128x1

2x1

Figure 2: Architecture of combined text and image models.

Model Train Acc. % Dev Acc. % Test Acc. %
Baseline (Random) 50 50 50
GloVe LSTM 69.37 67.59 66.51
Conv2D 61.22 56.59 56.85
AlexNet 53.9 52 -
Combined GloVe LSTM + Conv2D 69.80 67.99 66.87

Figure 3: Accuracy results of various models.

5.2 Image Model

Using AlexNet we obtained a 52.9 % accuracy on our train set and only a 52 % accuracy on our
development set. This model was not performing well for our task, so we abandoned further testing.
Achieving an accuracy near random baseline suggests the AlexNet is not a useful model for predicting
the quality of a movie from the movie poster. Perhaps image classification, which AlexNet was built
for, is too different from our problem.

The convolutional neural network with four convolutional layers worked much better than the AlexNet
achieving a 61.22 % accuracy on the train set, a 56.59 % accuracy on the dev set, and a 56.85 %
accuracy on the test set. The model was performing much better on the train set (upwards of 90%
accu racy) than on the development set, so we used early stopping and saved the best weights as
shown in the table, not the final weights. !

5.3 Combined Model

After training our separate models and freezing their weights, we did a search over possible weighted
averages and chose the weight that gave the best dev accuracy. We weighted the text output 60 % and
the image output 40 %. > We found it interesting that the best weighting was almost even, given that
the image model performed significantly worse than the text model.

! Andrew Ng was impressed our tuned CNN performed better than the random baseline for this difficult task.

’In response to our project, Andrej Kaparthy said that he ran into a similar problem processing Youtube
videos in that the textual metadata provided most of the accuracy and the video/image data bumped their metrics
by less than 1 percent.

Text LSTM Model Loss and Accuracy Visual Conv2D Model Less and Accuracy

0.80 { — train accuracy

dev accuracy
—— train loss
0.754 — dev loss

0.70

Metric

Metric

0.65

0.60 0.60

0 10 20 30 40 50 60 70 o 2 4

6 8 10 12 14
Epoch Epoch

(a) Text model (b) Image model

Figure 4: Model results over epochs

6 Conclusion

We found judging movie quality to be a difficult problem because of its subjective nature. When we
challenged ourselves as humans to classify movies as having a Freshness rating greater than 70 or less
than or equal to 70 based only on the movie poster, title and genre we achieved around 80% accuracy
suggesting that the avoidable bias is smaller than we thought. Note that the Freshness critic rating
is formed after watching the movie. While an LSTM network analyzing the textual information of
the movies provided most of the most accuracy of the combined models (66.51%), the convolutional
neural net trained on movie posters did increase the accuracy of the final combined model (66.87%)
suggesting the movie poster does provide information about movie quality.

7 Future Work

In the future we would like to train a model that includes description in the text model. The words
used in the description could strongly reflect the quality of the movie.

Secondly, we would like to further reduce the overfitting on the convolutional neural net. Next steps
include a more detailed search of hyperparameters of the model and more recent complex CNNss that
have been successfully used in image recognition problems.

Next, we would also like to do further research on combining the text neural net and image convo-
lutional neural net models. Rather than combining the final softmax layers, we would feed in the
output of the last layers preserving the vectorization of each input to the two neural nets into a third
neural net with multiple fully connected layers. This may be able to combine the information from
the text and image neural nets more successfully.

8 Contributions

We did the vast majority of our work sitting together in the same room, so everyone spent roughly
the same amount of time on the project. Kate built the text models and ran regression experiments,
Leslie scraped the Rotten Tomato data and implemented the AlexNet (and abandoned it quickly), and
Leslie and Petra built and tuned the image model and the final combined model.

9 Code Repository

https://github.com/lesliettu/cs230movies

References

[0] Krizhevsky, A. & Sutskever, 1. & Hinton, G. E. (2012) ImageNet Classification with Deep Convolutional
Neural Networks. NIPS: Neural Information Processing Systems, Lake Tahoe, Nevada. 2012.

[1] S. Kjartansson and A. Ashavsky, "Can you Judge a Book by its Cover?," Stanford CS231IN. http://cs231n.
stanford.edu/reports/2017/pdfs/814.pdf. 2017.

[2] B. Kuprel, "Judging a movie by its poster using deep learning." Stanford CS221. 2016.

[3]17J. Libeks and D. Turnbull, "You can Judge an Artist by an Album Cover: Using Images for Music Annotation,"
IEEE Multimedia 18(4):30-37. May 2011.

[4] M. Marovic et al, "Automatic movie ratings prediction using machine learning," University of Zagreb.
http://wuw.csc.kth.se/ "miksa/papers/AutomaticMovieRatingsPrediction_MIPRO.pdf. 2011.

[5] P. Hsu et al, "Predicting Movies User Ratings with Imdb Attributes," International Conference on Rough
Sets and Knowledge Technology.pp 444-452. RSKT 2014.

[6] C. Sun, “Predict Movie Rating,” NYC Data Science. August 2017.
[7]J. Pennington, R. Socher, and C D. Manning. "GloVe: Global Vectors for Word Representation." 2014.

[8] M. Abadi et al, "TensorFlow: Large-scale machine learning on heterogeneous systems," Software available
from tensorflow.org. 2015.

[9] E. Chollet et al, "Keras," https://github.com/keras-team/keras. 2015.

