Using Fully Connected Networks to Create Penguin
Tag Al

Reynaldo Cabansag*
Computer Science Major
Stanford University Class of 2020
cabansag@stanford.edu
Code Repository: https://github.com/jrcabansag/PenguinTagNeuralNetwork

Abstract

This project aimed to use deep learning to create videogame Al for a game called
Penguin Tag. Using recorded gameplay, we utilized fully connected networks to
create an enemy that emulated our playing style, with the best model achieving
42.3% accuracy when predicting player actions. This was pretty successful given
that a player’s gameplay is not always consistent or logical in fast-paced games.
We were able to play against the Al to evaluate it qualitatively, and it served as a
fairly tough opponent, as it learned strategies like proper aiming technique, target
prioritization, and diving the opponent.

1 Introduction

Al systems in the videogame industry are currently created through decision trees or reinforcement
learning techniques [2]. While a growing field in Al, deep learning, has revolutionized fields such
as computer vision, NLP, and speech, it has yet to take root in the videogame industry [1]. For this
project, we wanted to explore the capabilities of deep learning when it comes to creating videogame
Al Specifically, we wanted to see if it could create an Al that plays like a human player, by feeding
it the gameplay of a specific player. This issue is important, as currently many techniques - like
reinforcement learning - reward the Al for wins. Though winning is a generally good metric to strive
for, the Al could learn winning strategies/techniques that are deemed unfair by human opponents.
This project can introduce a new way to create Al for two-player games that requires less hand-tuning
than current industry methods, but can also be controlled to fit a particular gamestyle to allow for
more fun gameplay against the AL

2 Related work

This project was heavily inspired by deep learning research conducted in 2017 by Northwestern
students, which aimed to create Al for a fighting game called "Rumblah". In their research, they
captured the game state to be used as feature vector and attached the player input as the label. One
notable detail is that they took a picture of the game and used that as the feature vector . They then
ran the image through a convolutional network, to receive outputs with 60% accuracy and 80% top-2
class accuracy [3]. Since we had access to the game code of Penguin Tag, we chose instead to use
raw game data. This has an advantage in minimizing the size of the input - we simply use a (50,1)
shaped vector of game data, instead of using a (56,56) shaped vector. Using game data also removes

*To see more projects and games, visit jrcabansag.com

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

the requirement that the neural network has to extrapolate game state features from an image of the
game, which makes training it much easier.

3 Penguin Tag

@@@@gﬁ@ ﬁ}og

Figure 1. The Penguin Tag starting screen.

Penguin Tag is a two-player game where players play as blue and pink penguins facing off against
each other. Players must avoid getting tagged by the enemy penguins, which are the grey penguins
wearing a beanie opposite of their color. Players can shoot snowballs at these enemies to change
them to their team, and can also shoot snowballs at the enemy player to have a chance of slowing
them down. The only inputs needed from the player are the 4 keys for movement (W,A,S,D, or
arrow keys), as well as the G key or ALT key to shoot a snowball. The game can be played at:
http://jrcabansag.com/penguintag/

4 Dataset and Features

The training data used was two hours of recorded gameplay with two people playing against each
other, while test data was 10 consecutive minutes of gameplay. 10 times a second, the game would
record the game state as a feature vector, and also record a particular player’s key input at the time, to
be used as the correct label for that game state. The reasoning for this was to create an Al that given
a game state, would perform the same key input as that player. We recorded only one person’s key
inputs during the entire data collection process, so that the network would only have to worry about
matching that person’s gameplay.

Each feature vector contained 50 features total: each of the player penguins’ x and y coordinates,
speed, direction, and life counts, each of enemy penguins’ x and y coordinates, directions and team,
as well as up to eight snowballs’ x and y coordinates and directions. Each label was a number from 0
to 5, to represent each of the 6 different key inputs (no key, up key, right key, down key, left key, and
snowball key), and was later converted to a one hot vector during training.

To increase the amount of data acquired, we performed data augmentation on the training set by
flipping the game states horizontally, vertically, and both horizontally and vertically along with their
correct label. This quadrupled the amount of data collected, and also trains the network to perform
the same actions in mirrored game states.

8 | 8
8 8
a8 @ e | e E-)
8 e (] a8
] 8
-

Figure 2. Data augmentation. In each frame, the blue player is running away from the enemy penguins wearing
a pink hat. In the meantime, the pink penguin is chasing towards them and throwing a snowball at them.

Mirroring the game state horizontally, vertically, and both horizontally and vertically still preserves the game
state and strategies of both penguins, so long as their moves are flipped as well.

After data augmentation, we had a total of 275,000 training examples, as well as 6,500 test examples,
which were not augmented.

Training Data Label Distributions Test Data Label Distributions
150000
3500
125000
3000
100000 2500
75000 2000
E -
5 50000 3 1500
o
25000 1909
500
o
& & & & & O 0o— — — — — — —
& ¥ & ¥
®) & & & N e o] o)l o] e R
& & 3 N WO W o o o o
a(\o*‘ @ o9 o
Key Labels Key Labels

Figure 3. Graphs visualizing the label distributions throughout the training and test sets. As we can see, the "No
Key" label is much more frequent than the other labels, and this imbalanced is addressed when the models are
created.

5 Methods/Experiments

All of the models used in this project were fully connected networks which used RELU activations in
each hidden layer, and used a softmax activation for the output layer, which had six neurons to map
to the six possible key input possibilities. Each model was trained using the ADAM optimization
algorithm, which combines techniques like momentum and RMSprop in order to control the descent
of the gradient and speed up training. Models had variations in their numbers of hidden units, numbers
of hidden layers, and loss functions, as well as variations in the data that they were trained on.

In this project, "shallow" networks had 3 hidden layers, while "deep" networks had 7 hidden layers.
All of the shallow networks had 50 neurons in each hidden layer and the "fat" deep network also had
50 neurons in each hidden layer. The "skinny" deep network had 10 neurons in each hidden layer,
and also performed batch norm for each layer.

There was a significant label imbalance in the training and test set - as shown in Figure 3, the
frequency of the no key label was more than the frequency of all the other labels combined, for both
the training data and the test data. We anticipated that this would be problematic, as the models would
be incentivized to output no key due to its much higher label frequency. Thus, we experimented with
exposing models to different data, and created three categories: 1) All Data: Trained on all of the
data. 2) Actionable Data: Trained only on data where the user pressed a key (up, right, down, left, or
snowball labels). 3) Balanced Data: Trained on all the data, with the loss function normalized by
class frequency.

Models which trained on all the data as well as the models that trained only on the actionable data
used the standard softmax cross entropy loss function:

L(g,y) = — Z(yCZOQ(gc) + (1 = ye)log(1 — 4e))

C

However, models marked as training on "balanced data" were different in that they used a modified
softmax cross entropy loss function divided by the correct label’s frequency in the training data. This
was to prevent label frequency from having an impact on the preferred outputs of the model:

L(Q,y) — Z Yelog(¥e)+(1—yc)log(1—ye)

count(c)

At the start of training, the models were initially trained with a learning rate of .0005, which was
gradually decayed to as low as 0.0000001 whenever the cost of the network showed signs of diverging.
All of the models used batch gradient descent, since running through the entire batch was very quick,
and because none of the models seemed to have issues getting stuck in saddle points.

6 Results/Discussion

Training Data Accuracies

Model/Trained Data | AllData NoKey Up Right Down Left Snowball
Shallow/All 577 .999 .000 .001 .000 .000 .000
Shallow/Actionable .189 .000 174 423 164 419 705
Shallow/Balanced .149 .012 343 373 317 385 283
Skinny Deep/Balanced .203 .020 196 176 179 217 333
Fat Deep/Balanced .192 .034 454 391 500 396 375

Test Data Accuracies

Model/Trained Data | AllData NoKey Up Right Down Left Snowball
Shallow/All .606 .999 .000 .004 .009 .000 .000
Shallow/Actionable 175 .000 150 486 219 313 743
Shallow/Balanced 131 .007 356 403 324 319 267
Skinny Deep/Balanced .149 .030 167 182 219 187 324
Fat Deep/Balanced 161 .038 467 405 407 260 .303

Accuracy was determined by comparing if the max probability label from the softmax output was the
same as the true label. Based off of total accuracy, none of the shallow models seem to be overfitting,
whereas the deep models are likely slightly overfitting, shown by the drop in total accuracy.

Furthermore, if total data accuracy were the only metric to evaluate the models, the shallow model
trained on all of the data would be deemed the best model. However, when analyzing this model’s
accuracy on each label for the training and test set, we see that it has near perfect accuracy for the no
key label, and practically zero accuracy for the other labels. This is likely due to the high frequency
of the no key label in the training set, the model was just trained to output no key as the highest
possibility every time, and the model failed to learn what game states prompt for actions like moving
up, down, etc.

When we removed all of the no key data in the shallow network trained on actionable data, we saw that
the other labels finally had accuracies greater than zero (meaning the network was capable of learning
when to do each move). However, each of the labels have different accuracies. One conclusion we
could draw is that the lower accuracy labels (like up and down) are harder for the network to figure
out compared to labels like left, right, and snowball, which had much higher accuracies. However,
it’s also important to note that the probabilities of the labels roughly correspond to their frequency in
the training data. For example, the snowball label had the second highest frequency in the training
data, and so when the no key labels were removed, it was likely that the network wanted to output
snowball more to accommodate its higher frequency.

This hypothesis was confirmed when analyzing the models trained on balanced data, which rearranged
the loss function based on each class’ frequency in the training data, thus preventing it from prioritizing
any particular label based on its frequency. We see that the balanced models had roughly equal
accuracies for all of the actionable label, and very low accuracies for the no key labels, which shows
that the network couldn’t find a correlation between game state and pressing no-key. This is fairly
understandable, as there are many game scenarios where most people would agree which key to press
(to run or shoot), but there are few game scenarios where people would agree to not press a key.

Since actionable label accuracies were a better way to show what the model learned, we used a new
quantitative metric - the accuracy of the model on the actionable data only (up, right, down, left, and
snowball labels).

Actionable Data Accuracies

Model/Trained Data | Training Data Test Data
Shallow/All .000 .003
Shallow/Actionable 377 382
Shallow/Balanced .340 333
Skinny Deep/Balanced 222 216
Fat Deep/Balanced 423 .369

According to this metric, the fat deep network trained on balanced data learned the most with an
actionable accuracy of 43.3%, and the shallow network trained on the actionable data learned the
second most with an actionable accuracy of 37.7%. On paper, these accuracies may sound fairly
low, however, they are reasonable considering a player might not always press the same key in a fast
paced game, and also because there are several scenarios where pressing one key is just as logical as
pressing another key.

In fact, when we deployed the models and played against them, we found that these two models were
pretty difficult opponents, as they learned behaviors like proper aiming technique, target prioritization,
and diving towards the opponent, all techniques used by the player they aimed to emulate. In addition,
the difficulty of the opponent highly correlated to their actionable data accuracy, further validating
that it is a good quantitative metric to evaluate the models. Using this metric, we see that the skinny
deep network is deemed the second worst, and when we played against this model, we found that
its probabilities were fairly fixed regardless of the different game scenarios. Since the other deep
network and other fatter networks were able to learn very well, it’s likely that the 10 neurons for each
layer in the skinny deep network were not sufficient to extrapolate game scenarios. This makes sense,
especially since the first hidden layer had 10 neurons, and trying to squeeze all useful info from the
50 features into 10 neurons might have been impossible.

When deploying all of the models, we found that it was extremely helpful to make the enemy sample
from the top X softmax labels instead of simply picking the label with the highest probability. For
the models with low actionable data accuracy, they usually got stuck in walls and corners (since there
was little data where the players were stuck there), or did only one type of move. Sampling from
the top three or four softmax labels allowed for enough noise to prevent those scenarios, and also
allowed for more natural-looking gameplay that showed off the probabilities that they learned. On the
other hand, the models which had higher actionable data accuracies could sample from the top two
moves or not even sample at all (and just use the max move) and still look natural and be a difficult
opponent, showing off how much they learned.

Though the top two models were difficult opponents, they were not perfect. For the shallow network
trained on actionable data, it sometimes had a hard time regarding an enemy above it as a threat, and
often ignored it until it got tagged. This is likely due to the low accuracy the model had for up/down
key labels, which was a result of the relatively low frequencies of the up and down key labels in the
training data. Furthermore, the best model (the deep fat network trained on balanced data) would
confidently charge into enemies with snowballs, but would do so even with clusters of enemies, so
while it was able to defeat some, it would eventually run into the remaining enemies in the cluster
that weren’t hit. It’s likely that adding more data would help to perfect both of these models.

It’s highly recommended that you play against the models, both to have some fun, as well as to
evaluate the different models qualitatively. You can do so at: jrcabansag.com/PenguinTagAl

7 Conclusion/Future Work

In this project, we were able to successfully use fully connected networks in order to create Al that
played logically, and emulated the target player’s playstyles/techniques. In the future, we aim to
collect more training data to see whether it would allow for better actionable accuracies in each of
the models, and also see whether it would allow the best models to avoid the scenarios in which
they constantly lose lives. We’d also like to try different network architectures, like ResNets, to see
whether they would be able to learn how to distinguish game scenarios in which the Al should press
no key vs other keys, which fully connect networks struggled on.

Though we believe deep learning is not going to completely replace techniques like decision trees
and reinforcement learning for creating videogame Al, we hope that this project showed that deep
networks are definitely capable when it comes to creating videogame Al, especially if programmers
want to emulate a certain gamestyle in their Al but don’t know how to code it. Deep learning can
serve as one more tool in the toolbox for game developers, allowing them to create Al that make their
game even more engaging and fun.

References

[1] "Epic’s Tim Sweeney: Deep Learning A.I. Will Open New Frontiers in Game Design", Medium, 2017. [On-
line]. Available: https://medium.com/@ Synced/epics-tim-sweeney-deep-learning-a-i-will-open-new-frontiers-in-
game-design-5682ad32454c.

[2] D. Kehoe, "Designing Artificial Intelligence for Games (Part 1)", Intel, 2015. [Online]. Available:
https://software.intel.com/en-us/articles/designing-artificial-intelligence-for-games-part-1.

[3] E. Chan, "Learning to Fight: Deep Learning Applied to Video Games", Northwestern MSiA, 2017. [On-
line]. Available: http://sites.northwestern.edu/msia/2017/09/19/learning-to-fight-deep-learning-applied-to-video-
games/.

[4] M. Abadi, "TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems", TensorFlow, 2015.
[Online]. Available: https://www.tensorflow.org/.

[5] D. Smilkov, N. Thorat and C. Nicholson, "deeplearn.js", Deeplearnjs.org, 2018. [Online]. Available:
https://deeplearnjs.org/.

[6] "Require]S", RequireJS.org, 2018. [Online]. Available: http://requirejs.org/.

