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Abstract

This paper proposes a pipeline for the preprocessing and pixel-wise segmenta-
tion of primary and secondary glioblastomas and low-grade gliomas using deep
learning. We incorporated inception layers into a three dimensional UNet archi-
tecture, yielding improved model performance over established benchmarks on
the BRATS dataset by a statistically significant margin. Our models performed
comparably to the state-of-the-art on the segmentation of the enhanced tumor tis-
sues, the most difficult diagnostic task associated with glioblastoma segmentation.

1 Introduction

Cancer was responsible for 600,000 deaths in the United States in 2016, and is one of the leading
causes of death in the world today. Early detection is the most effective tool we have to stymie this
horrible disease, and with the rise and refinement of deep learning methods coupled with the dra-
matic increase in the power and accessibility of computational resources, machines seem perfectly
positioned to alleviate some of the glaring inefficiencies and shortcomings of the diagnostic status
quo. If new technology fails to empower our diagnosticians and equip them to do more with less,
our generation will be the first since the advent of modern medicine to see a decline in the quality
of care afforded to them. For the reasons stated, we are excited to apply convolutional neural net-
works to medical image analysis, specifically geared towards the segmentation and characterization
of glioblastoma from MRI scans.

2 Challenges

There exist a number of acute technical challenges that we are weary of. First and foremost is
the manipulation and interpretation of our image data. MRI data is recorded in three dimensions,
and requires a network architecture that can properly process it as such. In addition, 3D imaging
modalities are more prone to blurring and image quality degeneration as the result of patients moving
around on the stage during the course of their 30-40 minute scan. Accounting for this in a scalable
fashion will most likely be difficult, and we plan to use many forms of data augmentation to address
this issue.

Another crucial challenge is bounding and image pre-processing. Some of the DICOM images
can be as large as 1GB, and handling them can be computationally expensive, to say nothing of
training models. Bounding these images to a point that models can be reasonably trained on available
hardware will be critically important to speeding up the development process, allowing us to iterate
quickly and ultimately produce a good model.

3 Dataset and Features

The Brain Tumor Segmentation Challenge has become a popular competition for those working on
deep learning in medicine. Contestants develop algorithms (or, increasingly, neural networks) in



order to characterize acute glioblastomas, including both primary and secondary tumors [4, 1]. The
BRATS dataset includes multiple imaging modalities (T1/T2 MRI tissue contrasts, T2 FLAIR, and
T1 contrast-enhanced MRI), a variety of preenting phenotypes (primary/secondary tumors, solid
and infiltrative growing tumor profiles), a range of patient states (some images are acquired prior
to treatment, some post-treatment, and as such a number of images display common abnormalities
caused by radio-therapy and cavities from resection). In total, the data consists of 274 training
MR images, of which 220 are high grade gliomas and 54 are low grade gliomas. Included with
the training images are ground-truth pixel labels for each scan, with label values consisting of five
classes: necrosis, edema, non-enhancing tumor, enhancing tumor, and healthy tissues.

The dataset is broken up into two segments: the data itself (skull-stripped brain MRIs) and the
ground-truth segmentation of the data, hand-annotated by radiologists. Each case has between 2-4
images associated with it, often comprised of all four imaging modalities listed above. All images
are in stored in an MHA filetype.

3.1 Preprocessing

The standard pipeline for the classification and segmentation of brain MRIs is as follows:

3.1.1 Read in image

We read in the 4 images per patient (corresponding to 4 different MR modalities) using the skimage
library, which is ubiquitous amongst projects handling this kind of data. The images are generally
between 10-15 MB per case (500kb for ground truth, scans are 2-4 MB), and are 240x240 voxels.

3.1.2 Skull-stripping

Operating on this dataset simplifies this pipeline, as the images have already been skull-stripped.
That said, we developed our own skull-stripping pipeline based on a 2016 paper that used deep-
learning to identify and remove all non-brain features. The purpose of this is to allow us to begin
operating on our proprietary dataset we are acquiring from one of the largest outpatient imaging
companies in the United States, but do not yet have access to. However, since the BRATS dataset is
already skull-stripped, we were able to shift our focus to the development of the network itself.
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Figure 1: Skull stripping pipeline.

3.1.3 Resizing the images

Another standard step in any deep learning pipeline, image resizing, was performed by the skimage
library. We experimented with resizing to different input dimensions, and eventually decided to re-
size the images to 64x64x64 pixels for the baseline and 128x128x128 for our UNet implementation.
To resize the input images, we simply inputted the brain MRIs and ground truth segmentations into
skimage and used the built-in resize functions to generate data of the appropriate dimensions.



3.1.4 Normalize image

Signal intensity for MRI images varies significantly based on the tumor profile, physiological vari-
ance between patients, the hardware used to capture the image, the amount of Gadolinium (or an-
other comparable contrast agent) used for image capture, and the machine settings used to capture
the image. As such, normalizing signal intensity of the input images is critical. We used a standard
score-based method to normalize. This involves subtracting the mean intensity from the sample
voxel, divided by the standard deviation in voxel intensity:

o' =(z—p)/o

Standard deviation and mean were calculated over the whole training set. We used these same values
for normalizing the test set to be consistent with the measure that the neural net was trained on. We
believe this normalization method to be superior to alternatives (such as feature scaling) because it
keeps parameters from getting assigned artificially large or zero values during training, and because
it is significantly less sensitive to outliers (MRI images can have very bright spots in the image that
are not inherently cancerous).

3.2 Augmentation

We augmented our dataset by rotating the 3D images across all 3 axis, resulting in a six fold increase
in the size of our training set. This had a significant positive impact on our model performance:

our F1 training score increased from — to — and — to — on our models with and without
inception layers respectively. Our scores on the validation set similarly increased from — to —
— for our model without inception layers, and from — to — for our model with them. While

there are more complex augmentation methods described in the literature, we believe that our model
would over-fit our data if we did not expand our dataset before augmenting further.

4 Architecture

Our general model concepts are loosely based on the idea of an all convolutional network, meaning
that we do not use any fully connected layers [5].

4.1 Baseline Model

Our baseline model is an simple 3 layer convolutional net. Each layer is CONV-MAXPOOL-ReLU
where we use same padding for both the convolutional and the max pooling operations.

4.2 UNet-3D

Our UNet-3D model is built based on the original UNet-3D paper [2]. We use the same number of
standard convolution layers, maxpools, and upconvolutions (15, 4, 4 respectively) for a total of 23

layers and 19 million parameters. Before each max-pooling, we have a double covolutional layer of
the form CONV-ReLU-BATCHNORM-CONV-ReLU-BATCHNORM.

4.3 UNet-3D with Inception Layers

For this model we have altered the original UNet-3D architecture by replacing the double convo-
lutional layers with single inception layers [6]. This increases the total convolutions to 42 while
keeping the number of maxpools and upconvolutions constant but uses only approximately 2 mil-
lion parameters.

4.4 ResNet50-3D

For this model we implemented the ResNet50 that we saw in class [3] using 3D convolutions in-
stead of 2D convolutions. The original ResNet50 that we saw in class performed a simple binary
classification for its output, but since we are classifying each pixel in a 3D image, we modified the
network to incorporate upsampling (which we saw in lecture) in order to preserve the image size
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Figure 2: UNet Model Graph

when making our final predictions. This model is currently still in development and has not been
fully evaluated yet.

5 Evaluation

Our evaluation metric will be F1 score on the BRATS dataset, where we will attempt to properly
segment an MRI scan to identify the regions with enhancing cancerous tumors. We compare our
results for this task the the BRATS 2015 winners, which had a highest mean F1 score of 75. For our
loss we will be using binary cross entropy loss. The data is downsized to 155x64x64 to allow for
the model to fit into the GPU’s memory.

Training loss

(a) Train Loss (b) Train F1

Figure 3: Training Loss



(a) Validation loss (b) Validation F1 score

Figure 4: Validation Results

Model Train Loss | Dev Loss | Train F1 | Dev F1 Params
Baseline 0.037 0.0033 0.572 0.579 69,729
U3D 0.0021 0.0022 0.734 0.716 19,078,337
U3D Aug 0.0013 0.0016 0.805 0.778 19,078,337
U3D Inception 0.0019 0.0019 0.736 0.741 2,614,949
U3D Inception Aug 0.0014 0.0017 0.793 0.797 2,614,949

5.1 Evaluation Results

Our Unet3D model with Inception layers managed to outperform the standard U3D model, with a
validation F1 score of 0.797 compared to 0.778. This occurred both with data augmentation and
without, demonstrating an overall improvement over the original model with a ten fold decrease in
parameters. This was likely due to the models ability to view the image at multiple scales at each
convolutional layer. These results also demonstrate that our models might beat the original models
submitted to the BRATS 2015 competition. However, as the competition ended, we were unable to
evaluate our model on the official test set.

6 Future Work

A handful of 3D, fully convolutional architectures have done well on the diagnosis and segmentation
of everything from brain tumors to multiple sclerosis. We decided to implement to widely used
UNet-3D and ResNet-3D models (still in development), but there are many more models that we
would still like to build and evaluate in order to compare to our current models and results. For
future work, we would do some follow-up research on a handful of architectures such as SegNet,
FCN, Nabla-Net, DeepMedic, and others. We would also perform a more robust hyperparameter
search, as this takes quite a long time (a bit too long for the scope of this project).

We also plan to evaluate our models on different, similar datasets such as the new BRATS 2017
dataset, which was hand-labeled by a committee of doctors, as well as a proprietary dataset that we
have recently been given access to. We believe that our models will be able to perform quite well on
these datasets given the performance we have seen on our current dataset.

7 Contributions

William Bakst: General project setup (git repo, basic files, etc.), Preprocessing, Model evaluation
program, Baseline implementation, ResNet50-3D, Final Writeup.

Cameron Andrews: Data acquisition, Skull-stripping, ResNet50-3D, Final Writeup.

Linus Meyer-Teruel: Preprocessing, UNet-3D (with/without inception), Final Writeup.
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