Recognition of East Asian language characters

Yi-Ting Chen Po-Nan Li*
Department of Applied Physics Department of Electrical Engineering
Stanford University Stanford University
yitchen@stanford.edu liponan@stanford.edu
Abstract

This project addresses the image classification of East Asian characters by using
a convolutional neural network. The trained network reaches the classification
accuracy of 95.62%, and up to 99.75% if Traditional and Simplified Chinese are
seen as a single label. We further performed feature visualization, deconvolution
and class model analyses, which reveal that our network correctly learned most of
the frequent characters that can distinguish the four systems under consideration.

1 Introduction

Online translation tools have greatly changed the way people learn and use foreign languages. In
particular, augmented reality techniques such as “Word Lens” have made the translation even handy
by allowing users to capture the foreign words with their mobile phones so they don’t need to know
how to type them in. Such applications, however, usually require users to choose the destination
language as well as the source language, which users probably don’t know. In this project, we aim
to train a convolutional neural network (CNN) [1] model that can identify the language of words or
characters coming from an image. Specifically, we are interested in the classification of four common
writing systems in East Asia, i.e. Traditional and Simplified Chinese (abbreviated as TC and SC,
respectively), Japanese and Korean.

The four writing systems considered in this project inherently share many common features. For
example, Japanese Kanji and Korean Hanja are greatly adopted from Traditional Chinese characters,
although Japanese also has two other components in its writing system, namely Hiragana and
Katakana and Korean’s another component, namely Hangul, is largely used over Hanja. Additionally,
Simplified Chinese, one of the contemporary Chinese writing systems used in Chinese community,
also shares many common features from the stroke to character level. These factors combined makes
the classification of these East Asian writing systems an intriguing problem: can the network detect
the subtle difference in the Pan-Chinese writing systems? At a higher level, we would also like to
know if the CNN can learn the common building components of East Asian languages and use them
as convolutional features.

2 Related work

Two common approaches for image-based language identification are currently utilized. The first
one involves image segmentation of characters followed by text-based language identification [2].
The second one starts with feature extraction of images followed by clustering algorithm [3, 4, 5].
Among existing image-based works, little has been done with deep learning models, although there

*http://ponan.li/

CS230, Stanford University

fully fully
convolution maxpool convolution maxpool convolution maxpool connected connected

RN

256x256x32 128x128x64 64x64x128
256x256x1 128x128x32 64x64x64 32x32x128 1024

[elelclelolelelelelete]
[eleetelolole’clelelete)

H
S
N
kN

4

Figure 1: Architecture of the 5-layer CNN considered in this project.

A DEV keep prob B DEV keep prob
Accuracy 05 0.9 Variance 05 0.9
E Small 94.73% 92.89% E Small 3.4% 5.8%
o o
E | Normal 95.28% 94.21% £ | Normal 4.0% 5.4%

Figure 2: Dev set (A) accuracy and (B) variance with different hyperparameters.

are a number of CNN models for text-based language identification using features extracted from text
[6, 7, 8]. Different from these methods, in this project, our implementation will be purely image-based
using CNN. Unlike Ref. [7, 8], our features will be directly extracted from images, which is an area
that was less explored.

3 Dataset and Features

We built a data crawler that collects Traditional Chineses (labelled as TW), Simplified Chinese (CN),
Japanese (JP) and Korean (KR) versions of transcripts of all public videos on TED. com as our corpus.
The collected texts are then split into sentences, each of which is converted to a 256x256 grayscale
PNG file with random typeface, font size and random noise. We ensured each generated picture
contains at least five characters. The whole dataset totals 2.5 millions pictures with 25% of each
writing system and is then split into training, dev and test sets in a 0.90:0.05:0.05 fashion.

4 Methods

We built a CNN and developed a collection of tools for data preprocessing and post-analysis. The
whole pipeline is developed with Tensorflow [9]. Figure 1 shows the architecture of our CNN,
where 3 convolutional and maxpool layers are used to capture the structures of characters on the
training images, and two fully-connected layers and a soft-max is used to predict the language of the
characters on the image. The loss function is the cross entropy, defined by L = — 3", .. ylog(y),
where y is the label and ¥ is the prediction from our CNN model. The Adam optimizer was used to
train the model.

5 Results

The neural network was trained for 200K iterations with minibatch size 128 on a GPU-enabled AWS
instance. With the above described model, we achieve the accuracy of 99.3% and 95.6% on train set
and dev set, respectively. As the bias is decently good, we then aimed at reducing the variance by
tuning hyperparameters.

5.1 Hyperparameter turning

We use two hyperparameters to adjust the extent of regularization. 1) Model size: Normal size as
shown in Figure 1, and small size where all filters are cut half. 2) Dropout probability: Keep prob =
0.5 and 0.9. As shown in Figure 2, low keep prob enforces regularization to the model so that all
models with keep prob=0.5 consistently have lower variance. Among the model with low keep prob,
the model with normal size has better dev set accuracy. As a result, we chose the model with keep
prob=0.5 and normal size as the best performance model.

Accuracy (%)

100

95

90

85

80

Accuracy

B

Test Set Accuracy Breakdown c

Confusion Matrix

e

--- average
—_—tw

o
—
—_— kr

Prediction
T™W CN P KR
TW | 91.6% | 8.3% | 0.1% 0%
CN | 8.2% [91.7% | 0.1% 0%
JP | 04% | 0.2% [99.4% | 0%
KR | 0.1% | 0.1% | 0% |99.8%

80

Steps (k)

120

' 60
2000 0

40 8 0 160 200

0 12
steps (k)

Figure 3: (A) The accuracy on train and test set. (B) The accuracy of the individual languages on
test set. (C) The confusion matrix on test set.

5.2 Accuracy analysis

The best model scored accuracy of 99.34% and 95.62% on the train and test set, respectively (Figure
3(A)). More insightful details are revealed as we break down the accuracy of the test into individual
languages (Figure 3(B)). It is clear that, while JP and KR have accuracy above 99%, the TW and cn
are only around 90%. This relatively low accuracy in TW and CN can be explained in the confusion
matrix (Figure 3(C)). Most of the confusions happen only between TW and CN. For example, in the
confusion matrix, about 8% of tw data are are wrongly classified as CN, while the fraction that are
predicted as KR is less than 0.1%.

The error between TW and CN is probably due to the fact that traditional and simplified Chinese
share a lot of similar or even identical characters. On top of that, the strokes in characters of TW and
CN have similar style, making it harder to distinguish them. More details about this issue will be
discussed in a following section. TW and CN have high similarity. People who use TW can usually
understand CN, and vise versa. So one aspect of analysis is to combine them as the same label. In
this case, the accuracies are 99.98% and 99.75% on training and test sets, and the variance is 0.23%.

5.3 What did the classifier learn?

To reveal what features has the network learned, we performed various analysis approaches, including
feature visualization, deconvolution and class model generation.

5.3.1 Image patch visualization

After the CNN is trained, we fed all images in the datasets to the network and recorded the top
nine images that best triggered each activation layer in the network and the location of the neuron
with highest activation. If the hottest neuron is found at (u,v) of the I-th layer’s w-th map, the
image patch that is responsible for this activation can be found at the box between the corners

(zr,yr) and (zg,yB), where x;, = u Hi 8i, 8; being the number of stride at the i-th layer, and
TR =L+ Zi [kz H;:Hl 3]} +1, k; being the filter size at the i-th layer; y7 and yp can be derived
in the same way.

Figures 4 (A-C) show image patches that best activated the neurons in layer 1 to 3, respectively. Top
nine examples were presented for each filter. For example, Figure 4(D) shows nine examples of
image patch that would greatly trigger one of the 32 filters in the first layer. Interestingly, we found
the CNN tends to learn the shapes of frequent words in the training corpus. For example, as illustrated
in Figures 4(F) and (G), the character representing plurality of personal pronoun (such as we, you
and they) in both TC and SC were learned by the CNN to, ultimately, distinguish TW and CN.

5.3.2 Deconvolution

We further implemented a deconv-net to visualize the filters in the CNN. We recorded the locations
of the maxima when performing the maxpooling in the forward propagation, then preserve the
neuron with highest activation in the third layer, and perform un-activation, un-maxpooling and
deconvolution, as instructed in Ref. [10]. Figure 5 shows the deconvolution of two representative
examples. In Figure 5(A), for example, bright pixels in the deconvolved layer[!] indicate the locations

2%F dnimim

= i

00 HTE MNN IT Z3 ek 122 bk
00 T DAS S5 53 lew 222 A bnbe

oA THR 33N S5 ws

A 323
RN EwE beoa K
RN wise wa Kk

IR [I

IR
Fif

@

Figure 4: Image patches that best triggered the neurons in (A) 1st, (B) 2nd and (C) 3rd layer. Note
that some cells in (B) are blank, presumably suggesting that some filters were never fired. High
resolution images are available on the GitHub repository. (D) A representative sample picked from
(A) shows nine image patches that maximize the activation of one of 1st layer’s 32 filters. (E) A
representative sample picked from (B) shows nine image patches that maximize the activation of
one of 2nd layer’s 64 filters. (F,G) Two representative samples picked from (C) show that the CNN
recognizes both the Traditional and Simplified versions of the same frequent words to distinguish
them.

Deconvoledlayer!'! Activations vs groundtruth D layer(! ivations vs
A Deconvoled . B

layer®

Deconvoled o
layer(?! b

I &

L v | AN

AT E
2

Deconvoled
layer®!

£

Deconvoled
4ayerm/
=

Sih MO
i SR Ly
B

Figure 5: Deconvolution-net visualizes the components that triggered the activation. (A) Represen-
tative example of deconvolved Traditional Chinese sample. Keywords that distinguish TC against
SC fired strong activation. (B) Representative example of deconvolved Japanese sample. Hiragana
characters, one of three components in Japanese writing system, fired strong activation.

that trigger the activations in the following layers, which are superpositioned with the groundtruth for
visualization.

5.3.3 Class model generation by gradient ascent

Gradient ascent is another method to visualize the features learned by the model [11]. It starts with
a randomly initialized image, which then is updated to maximize a score function constrained by
the L1 norm. Figures 6(A) and (B) show two examples of gradient ascent visualization on the first
layer of our CNN. It is clear that their corresponding filters are sensitive to diagonal and horizontal
features, respectively. Applied in the output layer, the gradient ascent is able to transform an image
from one class to another. it starts with a data image, which then is updated to maximize the score of
a language. As an example in Figure 6(C), an image is classified as KR, and end up being classified
as TW after gradient ascent. Instead of transforming to real characters in TW, it adds background to
image. This might suggest that being able to deal with adversary and training on practical noisy are
necessary for a more robust classifier.

5.4 Real-time recognition

To help participants of the CS230 poster session better understand our work, we developed a program
that recognized the characters in the image that captured by the webcam in real-time, as shown in
Figure 7. Enabled by OpenCV [12], the program constantly fetches the image from the webcam,
converts to grayscale and feeds it the trained network. This program is highly responsive and
runs smoothly on a laptop without a GPU thanks to the portablility of TensorFlow’s frozen graph.
Interestingly, this real-time implementation predicts on webcam images decently, despite that we
never trained the network with camera data.

J85tA |Gradient | 2 51A|

o = —E—EE

\

i / Ascent
00 A Lels Z)A| 0k
7 /Z////;/’; W A (5} A 2
0 | |
//54////7///,//////2% il Sl

Figure 6: (A,B) Examples of generated images that maximize the activation of two filters in layer 1
of CNN. (C) Use gradient to transform an input labelled as KR to the one recognized as TW the by
the CNN.

& pytnon O# N EE T vnee o mus TunEAM Q =

A == B!

UABHEME -+
BSrye-—t | sond
| &

Figure 7: (A) Graphic user interface of the real-time reorganization program, where a print-out of
the Korean version Wikipedia page of “Machine Learning” is being tested. Box with white border in
the center is the region of interest. Red label indicates the prediction and the black texts display the
breakdown of catalogical probability. (B-D) Snapshots of the program being tested with Wikipedia
page of “Machine Learning” in (B) Japanese, (C) Simplified Chinese and (D) Traditional Chinese.

6 Discussion

As discussed in Sec. 5.2, the classification error is largely due to the confusion between TW and CN,
which intrigues us to find out that how did the CNN distinguish TW and CN. Although a user of either
TW or CN would agree that one is greatly different from the other, a large portion of characters that
exist in both systems are, however, identically the same. Surprisingly, the word frequency statistics
of each case shows that among the top 10 frequent characters, which collectively count 20% in the
corpus, only two characters are different. Indeed, these “key words” that can be used to distinguish
TW and CN are favored by the CNN and are responsible for the activations in the convolutional
layers, as revealed in Sec. 5.3.1 and 5.3.2.

Japanese, on the other hand, is usually recognized by the frequent existence of Hiragana characters.
Furthermore, although we cannot provide insights on how did the CNN recognize Korean, which
it did nearly perfectly, we found worthy mentioning that English and other Latin characters, which
occasionally appear in the corpus, never activated the CNN as they are irrelevant to the classification
of CNN’s interest.

7 Conclusion

We trained a five-layer CNN that can identify the writing system of the East Asian characters on a
given image. The trained network reached accuracy of 95.62% on the test dataset and variance of 4%.
Notably, our error analysis suggest that the classification error is largely due to the confusion between
Traditional and Simplified Chinese. To understand how did the CNN recognize and distinguish the
four writing systems, we performed various qualitative analyses, which consistently show that the
trained CNN uses characters that are frequently used in each of the writing system as features for
each of the convolutional layers. Result of class model image generation by gradient ascent, however,
suggests that our model might be susceptible to noisy or adversarial inputs. Future works might
include more Asian and Latin languages and more realistic training data such as those from cameras.

Acknowledgment

The authors are grateful for the inputs from Hsin-Hung Yeh, a PhD candidate at Department of East
Asian Languages and Cultures.

Code

Code of this project is publicly available at https://github.com/leeneil/ealc.

Contributions

Both authors conceived the research topic. Y.-T. Chen built the deep learning pipeline, performed
hyperparameter turning, managed computing resources and contributed to the gradient ascent analysis.
P.-N. Li developed the data crawler and generator, and contributed to the visualization of image
patches, deconvolution and real-time recognition. Both Chen and Li trained the net, evaluated the
results and wrote the report.

References

[1] Yann LeCun, Léeon Bottou, Yoshua Bengio, and Patrick Haffner, “GradientBased Learning
Applied to Document Recognition,” Proc. IEEE (1998).

[2] P.Barlas, D. Hebert, C. Chatelain, S. Adam and T. Paquet, “Language Identification in Document
Images,” Journal of Imaging Science and Technology (2016)

[3] G.S.Peake and T.N.Tan, “Script and language identification from document images,” Document
Image Analysis (1997)

[4] Ying-Ho Liu, Chin-Chin Lin and Fu Chang, “Language identification of character images using
machine learning techniques,” Document Analysis and Recognition (2005)

[5] Shijian Lu, Chew Lim Tan and Weihua Huang, “Language Identification in Degraded and
Distorted Document Images,” Document Analysis Systems VII, pp 232-242 (2006)

[6] C. Ciresan, Ueli Meier and Jirgen Schmidhuber, “Transfer learning for Latin and Chinese
characters with Deep Neural Networks,” WCCI 2012 IEEE World Congress on Computational
Intelligence.

[7] Yoon Kim, “Convolutional Neural Networks for Sentence Classification” (2014).

[8] Xiang Zhang, Junbo Zhao and Yann LeCun, “Character-level Convolutional Networks for Text
Classification,” NIPS 2015.

[9] Martin Abadi et al., “TensorFlow: Large-scale machine learning on heterogeneous systems,”
Software available from tensorflow.org (2015).

[10] Matthew D. Zeiler and Rob Fergus, “Visualizing and Understanding Convolutional Networks,”
arXiv:1311.2901 (2013).

[11] Karen Simonyan, Andrea Vedaldi and Andrew Zisserman, “Deep Inside Convolutional Net-
works: Visualising Image Classification Models and Saliency Maps,” arXiv:1312.6034 (2014).

[12] Itseez, “Open Source Computer Vision Library,” https://github.com/itseez/opencv
(2015).

