CS230 FINAL PROJECT

LightGAN: An Adversarial Approach to Natural
Language Generation at a Large Scale

Booher, Jonathan jaustinb@stanford.edu
De Alba, Enrique edealba@stanford.edu

Kannan, Nithin nkannan@stanford.edu

https://github.com/aprendizaje-de-maquinas/Light GAN

[. INTRODUCTION

ATURAL language generation is important in the to-
Nday’s environment of digital assistants. It is, however,
a difficult task to generate language that makes sense. Tradi-
tional approaches like n-grams become successful when the
value for n is large (generally about 5) and in that case, the
text generated tends to repeat itself or simply output a sentence
that it was trained on. This defeats the purpose of language
generation as a method of creating new, novel sentences.
Recently, RNNs (especially those with LSTMs) have become
successful at modeling language that generally makes sense.
These RNNs take large amount of memory that are dependent
on several factors including the size of the vocabulary being
trained on. In order to achieve state-of-the-art performance on
large datasets, these vocabularies must be large. This poses
a unique challenge when needing to train on resource limited
systems (eg 2 gpus). While there is some work that has reduced
memory requirements like sampled and hierarchal softmaxes,
however we propose that looking at different LSTM designs
and training paradigms will lead to state-of-the-art models in
natural language generation. We will combine the work from
two papers that were both sought to improve upon natural
language generation. The first uses a GAN approach to training
and the second uses a novel method (a new LSTM cell)
to reduce the number of parameters that the network needs
at the expense of extra compute time. We believe that this
combined model will achieve a high level of performance as
both methods have been shown to achieve state-of-the-art or
nearly state-of-the-art performance on NLP benchmarks like
the PTB and the Billion Word Benchmark.

II. THE DATA

The data that we are using for this project comes from the
SNAP group and their dataset "476 Million Twitter Tweets".
We thank Prof Leskovec for allowing us access to this data.
This dataset contains tweets from September 2009 - December
2009 that are estimated to be about 30% of the tweets from

that time period. An example of a tweet can be seen below:
T 2009-06-30 23:59:51
H http://twitter.com/eboe

W Out for karaoke and shots.
http://plurk.com/p/15f43e

Text if you

dare.

We cleaned the data by removing the timestamps, username
information, and duplicates. We also replaced websites, @
tags, and emojis with special tokens <URL>, <AT_TAG>,
<EMOJI> in order to reduce the vocabulary size. For example,

the above tweet would become:

Out for karaoke and shots. Text if you

dare. <URL>

Additionally, we removed tweets that were not over 50%
english sentences and removed words that we used less than 5
times. And lastly, we padded each of the tweets to a fixed
length to simplify mini-batch creation at runtime with the
token <NAW> for 'not a word’. This preprocessing gave us
a vocabulary size of approximately 100,000 which is at the
upper limit of vocabulary sizes in common datasets (only
the billion word benchmark comes close). But the systems
that traditionally work with vocabulary sizes this large are

distributed systems of over many (eg 32) gpus.

CS230 FINAL PROJECT

III. METHODS
LightRNN

Usually in RNNs we have very large vocabulary sizes,
|V| that tend to exceed the memory capacity of GPUs. For
our implementation we utilize a LightLSTM which uses a 2-
Compact (2C) shared embedding for our word representations,
where essentially each word is now represented by a row
vector and a column vector. We’re able to achieve this by
placing all the words in a 2-dimensional table, where given a
word’s position in this table we can associate that word with
corresponding row and column vectors. With this 2C embed-
ding we see that we only need 2m vectors instead of the
|V| vectors typically used in previous RNN implementations.
This significant reduction in our model size is possible because
any two words in the same column share the same column
vector, and so forth. With this implementation of LightLSTM
not only are we able to reduce the size of our model, but we
also reduce its computational complexity (softmax is only to

|V| rather than |V|.

Fig. 1. LightRNN (left) vs. Conventional RNN (right). [3]

Pe(We-1) P (W) Fe(we)
I Yr | Y
U U
hi

ye
1)

U -
hi_y hi_y
w w w
-

Words are initially randomly allocated in the table and we
begin training. Then periodically, we reallocate the table by
approximating the perplexity created by each word in the
vocabulary. Since our training set is so large (on the order
of millions of examples), we must approximate. We perform
this by calculating the log of the softmax logits from the RNN
and then accumulate these logs based upon the target word (the
word that should have been predicted based on the ground
truth). We can then use the arrays created by this procedure,
each of dimension |V x Ww Now, consider the bipartite
graph with the left hand side equal to the words w € V and

the right hand side containing all possible positions. Using
our arrays, we can assign an edge cost C(w,,7) from any
word to any position. With a source node having edges of
capacity 1 and cost O to every word, and a similar sink node
with the various positions, We can now apply our arrays to
solve a min-cost max flow problem. This solution will yield
an optimal allocation of words to positions in polynomial time

inV.

Fig. 2. Using Min Cost Max Flow to find the ideal allocation of words to
grid locations [3]

cost = l(wy, iz, j2)
flow =1

(@

RNN Attention

Attention in RNNs is a way to have the network learn what
parts of the sentence to look at when making a prediction
on the next word. This method has largely been used for
machine translation tasks; however, attention has been used
in sentiment analysis and object recognition as well. We use
attention with a similar motivation as attention used for object
recognition: identifying what part of the input (the sentence
so far) is relevant to producing the output (the next word in
the sequence).

Briefly, attention is implemented by first generating a con-
text from a window (be it fixed or learnable) by running hidden
states through a single dense layer and then through a softmax
to determine a probability distribution from the context. This
probability distribution is what tells the network what part of
the window to focus on. In this way, the network output at a
time step ¢ can be influenced by a time step other than ¢ — 1.

We use attention with a fixed window of maximum length
10 in both the generator and discriminator. And we found
this to substantially improve the stability of the GAN during
training as well as improve the performance of the model at

test time.

CS230 FINAL PROJECT

WGAN-GP

A Generative Adversarial Network (GAN) architecture in
general seeks to train two different networks a Generator and
a Discriminator (or Critic). The generator is trained to produce
novel inputs to ’fool’ the discriminator which is trained to
predict classes for examples (ie 1 for real and O for fake) as
accurately as possible.

This WGAN-GP architecture is an improvement upon the
original GAN with the goal of improving stability. This
GAN architecture (which is an improvement over the vanilla
Wasserstein GAN) optimizes what is called the Wasserstein
Distance. This is a measure of the distance between two
probability distributions. This makes sense in the case of
GANs as we would like the output of the generator to be
from the same distribution as the real data. The addition of
the gradient penalty (GP) helps stabilize GAN optimization
by regularizing the discriminator by adding a term penalizing
the distance the gradients of the discriminator are from 1 thus
limiting the size of the gradients [5]. Note that this can be
seen as an extension of regular gradient clipping. Other forms
of regularization like weight decay or Lo have been shown to
produce generators that learn overly simple functions [5]. To
simplify training, we run two batches through the discriminator
at every step, one of real data (z) and the other of fake data
(2) (this is called minibatch discrimination). Thus the loss

function for the discriminator is:

1 B B
B = E(Zg}i—zxi) el
=1

i=1
GP:A«%WVDW+R-@—xMh—Qﬁ
where R ~ Uniform and the loss for the generator is:

1
Bi

Mw

Lg=-—

&

1
for batches of size B and A\ is a regularization parameter that
is set to 10 from the original WGAN-GP paper. Note that
these summations can be seen as an approximation of the
expectation of their respective distributions. Additionally note
that we can extend the concept of the GP to the LightRNN
architecture by simply averaging the GP for both the row

prediction and col prediction.

Beam Search

Once the generator of the LightGAN is trained to accurately
predict the next word, we use a beam search to produce our
tweetbot’s output. Rather than greedily selecting the next word
of our tweet based on the RNN’s next-word output, beam
search allows us to explore multiple next word candidates.
The greedy approach is flawed as it may select a word that
may seem optimal at the time, but causes following words
to occur with low probability. Beam search does not suffer
from this as it takes its candidate words and continues with a
BFS-like search for a following word, only keeping the top-
most candidates. This allows our algorithm to not get ’stuck’
at any point. This algorithm runs in O(Bm) time where B is
the size of the beam (the number of candidates) and m is the

maximum depth of the search.

Fig. 3. Generator Loss

e: Mary did not
f: L 3
p: -122
e: Mary e: Mary slap
,,,,,,,, o Fooxxwer__ T
P 534 p: .043

e: £? mmmmmee K
Fin: cvmevinec e p: .182
joi Tl H

We use a beam width parameter of 100 for our search as any
higher resulted in in search taking too much time. The image
depicts a beam search of width 2, where the beam algorithm

looks at the two most promising candidates at each level.

IV. TRAINING

We train the GAN using what is called Curriculum Training.
In this method, we train on progressively larger strings (from
1 all the way to 32, the average tweet length). In this way, the
network will be able to build up to full tweets. This makes
sense in the context of language generation as the network is
learning sentence structures as well (i.e. tweets tend to start
with ‘RT <AT_TAG>:’). In this curriculum training, we train
the generator to predict the next word in a random subsequence
of an actual tweet. This method of training the generator is

prudent as it the way that traditional language models are

CS230 FINAL PROJECT

trained. Because of the curriculum training, the generator will
have good context for its predictions and will be able to make
a well informed prediction of the next word.

We train using Adam with 1r = 107% on both the
Generator and Discriminator. We train the Discriminator 5
times more frequently than the Generator. This technique for
training is similar to the one that was used in [4]. Additionally,
we found the values of 31 and 2 to be important for
stabilizing the GAN. The default values of 51 = 0.9 and
B2 resulted in the GAN being incredibly unstable. We found
0.5 and B35 = 0.9 to be the best

for the LightGAN. Intuitively, reducing the /s will increase

that the values 3, =

the decay of previous iterations and make the optimization
more dependent on the current gradient. We believe that this
results in better learning for the LightGAN as GANs are
extremely sensitive to small perturbations of weights so by
using an optimization closer to gradient descent, we reduce the
opportunity for the optimization to diverge while still keeping
the learning acceleration that using Adam affords us.
Additionally, we found the model to be extremely sensitive
to changes in the learning schedule (ie how many times we
run the optimizer for the generator and discriminator on each
iteration). With a poor schedule, mode collapse was common
and came early in training. However, with better schedules, we
were able to attain significantly better model stability without
seeing any signs of mode collapse for the duration of training

(see the graphs below).

V. RESULTS

As seen in the graphs of the losses, the GAN appears to
converge and suggest stability of the model. The discriminator
loss (the distance between the real and fake distributions is
close to 0 and the generator loss is moving away from 0 as it is
supposed to based on the optimization). There were a couple
outliers on the discriminator loss (which have been omitted
from the graphs for scaling reasons) that can be attributed to

a large value of the gradient penalty during that iteration.

Some example outputs from the model can be seen below:

<AT_TAG> be oversleeping my scholl

Fig. 4. Generator Loss over time

Generator Lass vs. lteration

. Discriminator Loss over time

Discriminator Loss vs. lteration

what wud you do ?
rt <AT_TAG>
<URL> -
<AT_TAG> we dog breeders of
thems kobe trends ! wowowow
While the output of the GAN was generally positive, the
GAN also produced output like:
<URL> a applaud bajillion coming

<AT_TAG> starvation akira be #iremember

finally dinner californians stretcher rubbing

Analysis of the Results

The quality of the GAN output is influenced by the values
of the random tensors passed in for the initial state of the
RNN. Potentially an approach in the future is to seed the initial
state of the RNN with the final state of another forward prop
through the RNN (ie from a ground truth). This would allow
the RNN to ’warm up’.

We know that the allocation table and the word embeddings
were learned appropriately because if we take the word
embeddings and allocation table generated by the GAN and
simply use them in a LightRNN based language model, we

can correctly predict the next word with an accuracy of

CS230 FINAL PROJECT

approximately 55% which is a good result considering the
amount of time we were able to train, the approach taken,
and the size of the vocabulary. To add to these factors, the
vocabulary contained many alternate spellings or versions of
the same words (lol and lololol) which largely accounts for
incorrect predictions of continuations.

In a similar vane, we can clearly see that the word allocation
is grouping similar words together in the rows. This is a
property that is attributable to the word reallocation step since
similar words will tend to have similar perplexities given the
same model parameters. For example:

..oy FEpopeulture, #Fowt, #wotd, Husnews, # f cv,

#thingsaguyshouldknow, #vuzx, #jblogs, #uknoua frica

#prayer, # freeny, #baby, #onmymomma, #cfp, ...

and

..., ummmm, hahahhaa, haaaaa, hahahahahahah,

Im faooooooo, welllll, wowowow, bwahahahaha, ayyy,

yaaaay, damnnnnn, lololol, bwahahaha, gahhhh, ...

Clearly, the first example row is a "hashtag’ row and the
second one is a row of emphasis or exasperation. These
groupings make sense because elements of these groups are
generally located in similar places in tweets or convey similar
meanings (ie “hashtags’ used for emphasis on key points and
for searchability). This property of the allocation table and the
associated word vectors can be seen as a clustering and can
could also be used in other applications where having such a

clustering would be useful.

Implications of the Results

One of the major implications of these results is that
we showed the ability to train models on extremely large
vocabularies on a relatively resource constrained system. For
example, language modeling of certain dialects of Chinese
with a vocabulary size of over 300, 000 is now within reach on
even moderately large systems. Similarly, both the Generator
and Discriminator could be used on platforms like Facebook
or Twitter. The generator could be used as a way for entities
like new organizations to get news out quickly and in a
language common to the platform as a whole. This could be
accomplished by instead of seeding the RNN with a random
initial state, to seed it with a state that is correlated with the

topic at hand or seed it with a human generated substring and

n,

have the RNN propose a continuation. Similarly, the Generator
can also be used to help digital assistants communicate in a
more vernacular sense and make them more personable. On the
other hand, the Discriminator can be used to help combat bots
on the same platforms. One could envision this discriminator
identifying spam or bot tweets on Twitter to flag suspicious

accounts.

VI. FUTURE WORK

The output of the RNN could be further improved by
adding more layers to the RNN and training for more epochs
before performing the reallocation step. The former would help
improve the quality of the output by the RNN at any given step
and the later would help the min cost max flow algorithm by
ensuring that our current predictions are as accurate as possible
for the current word allocation table.

The GAN itself could be further improved by training the
generator and discriminator for more times on each iteration.
Currently we are training the generator at a 5 : 1 ratio over
the generator. Further search for a better schedule of training
could help stabilize the GAN.

Lastly, experimenting with different training paradigms
could help us improve as well. Curriculum training makes
it so that the RNN does not see many of the words in the
vocabulary until extremely late in the training. This compli-
cates training especially for the implementation of the min
cost max flow solver as the information passed to the solver
early in curriculum training is sparse. Improvements could be
made by selecting random substrings of up to the maximum

length for each iteration of training.

VII. CONTRIBUTIONS

We all worked on understanding the LightRNN concept
and the WGAN together. Jonathan worked on implementing
the GAN, stabilization, and training, Enrique worked on the

LightRNN cell, and Nithin worked on the data input pipeline.

REFERENCES

[1] J. Yang, J. Leskovec. Temporal Variation in Online Media. ACM Interna-
tional Conference on Web Search and Data Mining (WSDM ’11), 2011.

[2] J. Leskovec, A. Krevl. SNAP Datasets: Stanford Large Network Dataset
Collection, June 2014.

[3] Xiang Li, Tao Qin, Jian Yang, Xiaolin Hu, Tie-Yan Liu: LightRNN:
Memory and Computation-Efficient Recurrent Neural Networks. NIPS
2016: 4385-4393

CS230 FINAL PROJECT

[4] Ofir Press, Amir Bar, Ben Bogin, Jonathan Berant, Lior Wolf: Language
Generation with Recurrent Generative Adversarial Networks without Pre-
training. CoRR abs/1706.01399 (2017)

[5] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin and
Aaron C. Courville. Improved Training of Wasserstein GANs. CoRR
abs/1704.00028 (2017)

