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Abstract

In geomorphology research, flume experiments are used to study patterns of landscape evolution, and to under-
stand the physical processes by which these patterns are created on the surface of the Earth. Understanding
these processes is important for assessing risk of environmental disasters (e.g. floods in urban areas) and
for modeling natural resources such as oil & gas and groundwater. Although various numerical models were
proposed in the literature for approximating flow and sediment transport captured in flume experiment videos,
these models often show limited resemblance to the records and/or are quite expensive to calibrate and run. In
this work, a neural network model is proposed for generating new videos of the flume, which are laborious to
obtain otherwise, but that are important for geomodeling and uncertainty quantification studies (e.g. statistical
hypothesis testing). The network is trained on a sequence of frames recorded in a flume tank across various
experiments designed with different boundary conditions. The videos generated by the network are assessed
qualitatively on the basis of visual inspection and quantitatively with return level plots from extreme value theory

and autocorrelation statistics from variogram analysis.
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Introduction

Surface processes (e.g. water flow in rivers and deltas) are con-
stantly reworking the landscape of our planet with perhaps the
most diverse patterns of sediment displacement known to hu-
manity. Capturing this diversity is important for advancing our
knowledge of systems [Murray et al., 2009], and for sustain-
able exploitation of natural resources by future generations, as
resources are stored under ground by surface processes. From
a modeler’s perspective, great diversity comes with great un-
certainty. Although quantifying uncertainty about physical
processes of the past is understandably hard, modeling this un-
certainty explicitly is crucial for assessing the risk of floods in

urban areas, and for estimating reserves of natural resources,
among other reasons.

In order to model uncertainty, statistical methods require
hundreds or thousands of observations, yet it is only recently
that the geomorphology community started to collect high-
resolution image data from a few (< 10) flume experiments de-
signed with complex boundary conditions [Bufe et al., 2016].
Such advances in data acquisition via sophisticated experi-
ment apparatus is what motivates this project and report.

We aim to develop a statistical learning method with neu-
ral networks that is capable of reproducing the spatial patterns
of flow captured in flume videos, and that could potentially be
used to augment the data for subsequent Monte Carlo studies
and hypothesis testing. Differently than traditional basin filing
modeling [Paola, 2000], our goal is to let the data speak for
itself. The present work is unique as there is no previous
attempt in the literature to apply modern machine learning
methods to extract insights from this type of data.

In section 1, we quickly describe the dataset used in this
project, and introduce the proposed neural networks for video
generation. In section 2, we compare side-by-side the original
videos recorded in the tank with the videos synthesized by
the neural networks. In the same section, we derive useful
statistics for assessing the quality of flow pattern reproduction.
Finally, in section 3, we summarize the findings and discuss
possible future work.
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1. Data and Methods

In a recent investigation published in nature geoscience, [Bufe

etal.,2016] generated a dataset comprising seven high-resolution

videos of flume experiments under different boundary con-
ditions (e.g. uplift rate, sediment discharge) in an attempt
to understand the forces that control relief creation and land-
scape flattening in sedimentary basins. Through an ongoing
research collaboration, we’ve been investigating the extent to
which flow patterns recorded in the tank can be reproduced
with advanced statistical methods.

1.1 Data Preprocessing and Augmentation

Frames extracted from the videos at a rate of 0.5 frames per
minute (fpm) were organized on separate folders representing
distinct flow regimes (see Table 1). Each frame (or image) in
the dataset comes in high-resolution with 3939 x 5931 pixels
(see Figure 1).

Table 1. Number of frames for each flow regime.

runl run2.1 run2.2 run3.1 run3.2 rund
1638 171 1339 113 1256 1256
run5 run6.l run6.2 run7.1 run7.2 | TOTAL
2404 141 1033 59 2106 11516
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Figure 1. High—resltion overhead shot of the flume tank.

Cropping & upscaling We crop the pixels in the images
that are outside of the sandbox and upscale the resulting im-
ages to a more manageable resolution with 150 x 100 pixels
for training the neural network models (see Figure 2).

Thresholding To further reduce the dimension of the prob-
lem, we convert the RGB images into binary images where
the white color represents areas of active (or intense) water
flow. This is done by first converting the images from RGB to
HSV color space and by picking the appropriate hue value for
the blueish color with a given tolerance range (see Figure 3).

Augmentation We augment the dataset of 11516 images by
flipping them horizontally at random. Because the water flow
has a preferential direction from the top to the bottom of the
tank, we do not flip the images vertically. We consider random
crops of similar size as a future augmentation technique.

I v ’
Figure 3. Thresholding RGB images into water flow patterns.

Normalization All images are normalized to contain pixel
values in [0, 1] with a straightforward division by the maxi-
mum possible integer value of 255.

Optical flow Besides training the neural network models
with frames directly, we also attempt to train the networks
with optical flow images generated for each dataset. See
Figure 4. Predicted optical flow images can be used to warp
initial frames and synthesize new videos.

Figure 4. Example optical flow images computed from RGB
datasets. Colors represent direction of flow.

Train-Dev-Test split All the runs in Table 1 are included
in the training set except run3.1. The images in run3.1 and
run3.2 come from the same experiment, and are expected to
have similar distribution. The hundred frames in run3.1 are
saved for the dev set. In the future, at the time of deployment
or publication, a new experiment should be designed just for
testing the trained network models.

1.2 Proposed Neural Network Models

Regardless of the model, the problem setup is the same. A
window of past frames x, = (L—p+1,...,1—1,1;) is defined
by looking p steps into the past, and the goal is to predict
a window of frames y; = (I;y1,l12,-..,1r47) with f steps
into the future. For this project, we concentrate on the case
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p > 3, f =1 of single step prediction, and unroll the neural
network iteratively in order to produce new videos of arbitrary
length based on a small collection of initial p frames.

The training set = {xg), yﬁj)}_ ) is therefore a
i=1,2,....m
collection of m slices of the videos. These slices are fed into

the following neural network models.

TorricelliNet Inspired by one of Torricelli’s equations of
motion from classical mechanics

2
Xevar = Xt + VAL +07

in which a particle with velocity v and constant acceleration
a moves from locations x; to x; A, in the time interval Az, we
design a convolutional neural network with three modules:

1. velocity module

Zg) = Conv(xg)),kern =5,pad =2)

' ) L times
al!) = ReLU (BatchNorm(z\!)))
v(x\) = Conv(all)
2. acceleration module
z;,i) = Conv(xp),kern =5,pad =2) )
. ) L times
a;,') = ReLU (BatchN orm(zg)))
a(x) = Comv(al)
3. prediction module
. ) , (i)
zg) = Conv(xg) + v(xg)) + a(J;p ) Jkern=1)

yff) = Sigmoid(BatchN orm(zg,’) )

The prediction module combines the first and second deriva-
tives with the past frames to produce a new frame. The kernel
size of 1 is used to shrink the volume (or depth) from any
given number of hidden channels to the number of output
channels.

SliceNet In an attempt to capture very small changes in
flow patterns, a recurrent neural network model is proposed.
First, 50 evenly spaced rows of the frames are forward in
time using different GRU units. Then, another set of 50 GRU
units is used to fill in the gaps between the predicted rows as
illustrated in Figure 5. The hidden states of the GRU units
are fed into a dense layer with sigmoid activation to produce
frames with valid pixel values in [0, 1].

The proposed neural network models are trained using
all three different color spaces RGB, GRAY, and BW, and
optical flow images. Each configuration requires a different
loss function .%,. For binary images, we use the binary cross-
entropy loss whereas for continuous images, we use both L

Recurrence in time

Recurrence in space

Flgure 5. ShceN et archltecture GRU umts (1-50) are used to
predict evenly spaced rows in the future frame, and another
set of GRU units (51-100) is used to fill in the gaps.

and L, loss. For the SliceNet, an additional total variation
term is added to the loss to enforce continuity between the
slices:

Z(y,y) = y,+1

Z(y,y +Z

The optimization is performed with the Adam optimizer
and with various learning rates. The best obtained results are
reported in the next section.

| =7 = 5o,

2. Results and Discussion

We assess the videos synthesized by the neural networks with
visual inspection, and with relevant statistics computed on the
validation set.

2.1 Visual Inspection
Based on p initial frames, we synthesize new videos of the
flume experiment by unrolling the network. These videos are
compared side-by-side with the original records as illustrated
in Figure 6 and Figure 7.

time 0010 time 0050 time 0100

Figure 6. Screenshots of videos synthesized by the
TorricelliNet for BW, GRAY, and RGB datasets.

Full videos are available at https://vimeo.com/
album/5055962. For the BW dataset, the neural network
quickly looses its ability to mimic the flow dynamics and just
copies the same frames forward in time. For the GRAY and
RGB datasets, the frames quickly become blurry.
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Figure 7. Screenshots of videos synthesized by the SliceNet
for BW dataset.

2.2 Return Levels and Variograms

For assessing the performance of the network quantitatively,
we introduce two statistics based on the difference process.
The difference process d; = ||l;+-1 — ||, is the time series of
L norms between consecutive frames. Its normalized ver-
sion d; = d,/d; is computed for the original and synthesized
videos.

Return levels We would like the original and synthesized
videos to have the same return levels [Beirlant et al., 2005].
This means that on average big changes in flow patterns should
take the same amount of time to happen.
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Figure 8. Return levels for original and synthesized videos.

In Figure 8, the proposed neural networks models underes-
timate return levels of the true (or original) phenomena. This
is in agreement with the previous visual inspection, in which
we noticed that very similar frames were copied forward in
time after a short time horizon.

Variograms We would like to reproduce the autocorrelation
of the process [Matheron, 1971]. In other words, given any
time interval separating two frames in the synthesized video,
we would like the correlation coefficient to be equal to that of
the original video.
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Figure 9. Variograms for original and synthesized videos.

In Figure 9, the ciclicity of the empirical variogram com-
puted on the normalized difference process is not reproduced
by the proposed neural network models. The correlation

lengths in the videos synthesized by the neural networks are
much larger than those present in the true phenomena.

Among the two proposed neural network models, the
SliceNet produces frames with greater variability. Learning
curves in Figure 10 indicate an efficient optimization. Similar
learning curves were seen while training the TorricelliNet, but
are omitted here to save space in the report.
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3. Conclusions and Future Work

The neural network models proposed in this work are far too
simple to accommodate the complexity of flow and sediment
transport recorded in flume experiments. Despite the various
attempts to train the networks with different color spaces,
architectures, and loss functions, all fail to reproduce statistics
of interest such as return levels and autocorrelation.

The SliceNet architecture together with the total variation
loss is promising. Additional work is needed to eliminate
artifacts in between neighboring GRU units.

Training the networks on optical flow images instead of
raw frames did not improve the results considerably. Future
work should include a more careful investigation of video
synthesis by means of warping frames with optical flow.
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