CS230

Optical Character Recognition via Deep Learning

Connor Meany Matias Arola
Stanford University Stanford University
cmeany@stanford.edu matiasa@stanford.edu
Abstract

Given the ease of handwriting and large quantity of existing handwritten text,
converting handwriting to computerized text is a problem of great importance with
many applications. We created both a character level and word level neural network
to recognize handwriting. Our data came from the EMNIST dataset (characters)
[17] and the IAM dataset (words) [15]. The character-level model utilizes a ResNet-
50 structure and achieved 88% accuracy. The word-level model uses a 3-layer
CNN which feeds into an LSTM layer; this achieved 77% accuracy at a character
level. The main problems that we encountered were character segmentation and
normalizing word length.

1 Introduction

1.1 Motivation

As the world becomes more and more digitalized, the incompatibility of handwritten text with
computers becomes a greater problem. A great quantity of data is only saved in formats inscrutable
to digital processing; this makes it difficult to access and also means it can’t be easily searched,
stored, shared, and analyzed. Handwriting is also commonly used in applications such as taking
notes and filling in forms due to the fact it is often easier than dealing with technology. There is a
growing divide between the increasing usefulness of digitalization and the plethora of undigitalized
text. An accurate algorithm for converting from handwriting to computerized text would help make a
whole new set of data accessible and have applications from analyzing historical texts to improving
note-taking.

1.2 Outline of Model

Because text is made up of words, and words are made up of letters, the core of handwriting
recognition is identifying handwritten characters. We initially assumed that after creating a model
that could identify characters, we could simply apply it to every character on a page of text and
process the entire page. Thus, the first model we created aimed to convert images of characters to
their respective encoding. The input to our first algorithm was 28 by 28 pixel grayscale images of a
single character. We then applied a ResNet to obtain a predicted character via a softmax vector. The
labels are one-hot vectors which encode the character; i.e. the first entry of the vector corresponds to
“a,” the second to “b,” and so on (though the actual vectors start with numeric characters).

After implementing the character recognition network, we turned to the process of identifying whole
words. We tried using open source character segmentation software to separate characters from
within the word and run them through our model, but we achieved very low accuracy because letters
were often touching each other and thus they weren’t able to be segmented. We decided to switch
to a word-based neural network. This model takes grayscale images of handwritten words as input.

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

It runs them through a CNN and then an RNN with LSTM blocks to obtain a sequence of one-hot
vectors similar to the character vectors.

2 Related work

2.1 Character Recognition

Handwriting recognition is a relatively well-studied field, so there are many other papers written on
the subject. Identifying characters is a subject that was addressed even before the era of deep learning,
but these algorithms had low accuracy or only worked on limited datasets as noted by Line Eikvil
[8]. The first deep learning algorithms for optical character recognition (OCR) emerged when image
classification techniques were refined. An incredibly popular machine learning task is classifying
the MNIST dataset, which is similar to our dataset but only consists of numeric characters 0-9.
Best Practices for Convolutional Neural Networks Applied to Visual Document Analysis by Simard,
Steinkraus, and Platt was a very helpful paper as we started trying to apply convolutional neural
networks (CNNs) for image analysis on a dataset like this [19]. It includes tips for data processing and
structuring CNNs. Another paper by Bottou et al. used a variety of CNN structures on the MNIST
dataset and compared the performance of these different structures, finding that their “Boosted LeNet
4 was the most successful [4]. This model was a variation on a CNN. It was evaluated on only
numeric characters, so it is hard to compare to our model, but it achieved an impressive 99.3% test
accuracy. The drawback of their model was that it took 5 weeks to train, while our character model
only took less than a day. The introduction of residual networks (ResNets) was a breakthrough for
image classification, and so this method is very applicable to character recognition [12]. ResNets
allow for much deeper CNNs, which is why we used a ResNet for our final character recognition
model. An example of character recognition using ResNets was in a Stanford CS231N paper by Balci
et al. [2]. Their approach was similar to ours, but we obtained higher accuracy—the difference could
be because our network is deeper and we used dropout while training it.

2.2 Word Recognition

Our final model took entire word images as input, rather than just characters. One paper which did
this was by Pham et al., which used a 2-layer CNN which fed into a bidirectional recurrent neural
network (RNN) with LSTM cells [18]. This overarching structure is almost identical to ours, but
they use a different number of layers, different activation functions, different hyperparameters, and
a different dataset. Their approach is very successful at word-level recognition, which is why we
implemented a model so similar to theirs. One of the current best models in the world at word
recognition utilizes a similar structure, but with a multidimensional RNN structure, created by
Graves and Schmidhuber [10]. This extends the idea of a bidirectional RNN to two dimensions,
corresponding to the dimensions of the image. This model is very effective, and won an international
handwriting recognition competition. We didn’t attempt this technique due to time constraints, but it
would be something we would try if we had more time.

3 Dataset and Features

3.1 Character recognition

For character level recognition, we used the EMNIST Balanced dataset [7]. The dataset is based on
the NIST Special Database 19 [17], which contains handprinted sample forms from 3600 writers and
810000 character images isolated from their forms. Alternative smaller datasets have been derived
from NIST for character classification purposes. The most widely known and used is the MNIST
database of handwritten digits, which has been extended with letters to form the EMNIST dataset.
The EMNIST Balanced dataset is based on images from the NIST database. In this set, upper
and lower case classes of certain letters are merged to prevent errors resulting merely from
misclassification between upper and lower case letters. This reduces the number of classes from 62
to 47, with 10 classes for the different digits and 37 for letters. Examples of images from this dataset
can be found in Figure 1(a).

The dataset contains a balanced subset of all these classes, divided into a training set of 112,800
images and a test set of 18,800 images. They have been preprocessed into high contrast black and

Table 1: Distribution of words under 6 characters
Word length 1 2 3 4 5 6 Total

Number of words 2,718 14,481 17,974 13,544 9,308 6,851 64,876

Table 2: Processed datasets
Dataset Train Test Dev Total
4-6 characters 26,732 1,486 1,485 29,703
1-6 characters 58,388 3,244 3244 64,876

white images with the size 28 x 28 pixels. The size of the dataset was large enough for it to be used
on the task without adding any additional samples using data augmentation, but to reduce bias further
this step of preprocessing could be introduced.

For importing the images and the labels into our model we used python-mnist, a simple data
parser for MNIST and EMNIST [14]. It allowed us to import the images and labels directly into
NumPy arrays [21] of size (m, n,) and (m, 1), respectively, where m corresponds to the number of
examples in the dataset and n, = 28 x 28 to the number of pixels in an image. We then reshape the
images into (m, 28,28, 1) for the CNN model and convert the list of label numbers into an array
of one-hot vectors with a shape (m,n,) where n, = 47 is the number of classes. The last step
of preprocessing was to divide the pixel values by 255 to have a distribution of values between 0 and 1.

3.2 Word recognition

For training a model to recognize complete words we used the IAM Handwriting Database [15]. The
database contains handwriting examples from 657 writers, segmented into sentences, text lines and
words. For our purposes we used the set of 115,320 segmented words as individual black and white
PNG files of varying shapes and a text file containing the label information. Examples of sample
images can be found in Figure 1(b).

Although the segmentation of words was generally good, 18,864 examples had been labeled as
possibly having bad segmentation. Furthermore, there are many punctuation marks and other symbols
labeled as their own words. We removed all these examples from our dataset to have a balanced
dataset of only words consisting of letters. The size of this new, cleaned dataset was 82,250 words.

Since the word images have varying shapes, we had to reshape them to have the same dimensions
in order to use them as input for our model. We added white padding to all the images until they
were square-shaped, and then scaled them down (or up) to 64 x 64 pixels using the Python Imaging
Library [6]. Later, when importing them to our model, we converted the pictures into a NumPy array
of size (m, 64,64, 1). The pixel values were also divided by 255 to achieve input values between 0
and 1.

We extracted the labels from the text file and padded shorter words with artificial "end of word"
characters to have a constant length. This allowed us to split the words into characters, which we
finally represented as one-hot vectors. In the end, the shape of our label vector was (n.w, m, n.c),
where n.w and n.c correspond to the length of the longest word and the number of possible characters,
respectively. To increase performance we decided to limit our dataset to shorter words, initially from
4 to 6, later 1-6 characters long. As our dataset sizes were between 10,000 and 100,000 samples, we

used a 90-5-5 distribution between training, test and dev sets. The total sizes of these sets are in Table
2.

4 Methods

4.1 Models

We experimented with two different types of models for recognizing individual characters. For our
baseline model we trained a CNN-model: 3 CNN-layers with ReLu-activation and max pooling,
and a fully connected layer accompanied by a softmax activation. This general type of a network is

Table 3: Accuracies of the models
1 char, CNN 1c,ResNet 4-6c, I-layer CNN 1-6¢, 1-1. CNN 1-6c, 3-1. CNN

Train 89.9% 90.6% 81.9% 88.5% 83.7%
Test 84.8% 88.5% 47.5% 71.6% 76.9%

widely used as a baseline for image classification, which also includes character recognition. The
output of the softmax function corresponds to a probability distribution of all the different possible
labels.

As an improvement to this baseline model we found using residual networks to be effective. We
modified the ResNet-50 model [11] for our own use, changing the last layer to a fully connected
layer with softmax activation. Thus the output of this model is similar to that of the CNN-model.

We also developed a separate model to classify word images. The word model feeds the input image
into a CNN-model, which is used to encode the image before it is passed into an RNN-model. We
experimented with several models for the CNN, with the two main versions being a 1-layer CNN and
a 3-layer CNN. The deeper model was more accurate, but also needed more regularization to avoid
overfitting. After extensive hyperparameter tuning we achieved the best results using filter sizes of
3 x 3 and layer sizes increasing from 16 and 32 to 64.

The CNN-layers consist of a convolutional layer, a batch normalization layer [13], a ReLu activation
and a max pooling layer with 3 x 3 filters. Additionally, we used Dropout after each layer to prevent
overfitting [20]. The CNN-layers are extracting features from the images, providing the next layers
with information for detecting the characters.

The output from the CNN-layers is divided into 16 time steps, which are then fed into a layer of 64
Long Short Term Memory (LSTM) cells [9]. Each character of the word we’re predicting has its
own LSTM layer, so in total we’ll have 6 layers of 64 LSTM cells. As we found experimentally, the
model with 16 time steps has a better performance than models with just one time step, since it is
able to take a sequence of encoded features from the CNN and use it to predict the character.

Each of the LSTM-layers has its output fed into a fully-connected layer with a softmax activation,
resulting in a distribution of the character probabilities. This is then the output that is compared to
the corresponding character of the training example.

4.2 Training

The loss function of both our models is categorical cross-entropy, which aims to maximize the
softmax output of the correct label for each example: L = — . y;log(¥;). Since instead of having
just one output the word model has one output for each character in the word, the total loss is simply
the sum of these losses.

For training the models we used the Adam optimizer [1] with the default hyperparameters to update
the network weights. With a large dataset and a multi-layer classification model it was important
to use this optimizer speeding up the training. We also used minibatches of 32 samples to update
parameters without having to feed an entire epoch through the model before seeing results.

For tweaking our word recognition model initially, we used subsets of the training set to improve our
model until it achieved satisfactory results on these small sets, before moving on to the entire training
set.

5 Experiments/Results/Discussion

We experimented with our baseline and ResNet models, and finally the best character recognition
model achieved an accuracy of 89% [Table 3]. However, using this model to recognize entire words
proved to be a much greater challenge, as even the best open source character segmentation models
[3] ended up having an extremely low accuracy on the training data. This ultimately lead us to use a
separate model for the word recognition problem.

Figure 1: Samples and predictions

(a) Character model (b) Word model
Label: “Lord” Label: “the” Label: “system”
Label: 40 (f) Label: 8 Label: 44 (q) Prediction: “hard” Prediction: “the” Prediction: “ayshem”
Prediction: 40 (f) Prediction: 8 Prediction: 9

Figure 2: Train accuracy of the word model by character

1
0.9 |
§ 0.8 —— Character 1
5 0.7 |- /// —— Character 4
<<£ 0.6 Character 5
0.5 —— Character 5
0 10 20 30

Epoch

In our initial experiments we found that using the entire dataset makes the model predict shorter
words than expected, since the number of longer words is low compared to the short words. Therefore
we started training our dataset only with words from 4 to 6 letters. However, with this dataset the
model tended to overfit and the test accuracy remained below 50% [Table 3]. We achieved a better
accuracy with a dataset that also included the words under 4 characters, getting 77% of the characters
labeled correctly in the test set.

We kept track of the individual accuracies of the characters to gain insight into the way our model
learned to predict words. It learned fairly quickly to recognize word lengths, and thus the accuracy of
characters 5-6 started as significantly higher than that of the others [Figure 2]. Although training
accuracy increased for a long time, the maximum test accuracy was achieved already early in the
process, leaving bias as the main issue of the model.

We were able to find a clear trend in the characters the model labeled incorrectly. It learned to
recognize the shapes of letters fairly well, but since handwriting varies a lot between different
people, it did make mistakes whenever the characters were unclear due to imperfect or cursive
handwriting. For example, a capital L with a slightly curved horizontal penstroke is easily confused
with a lowercase h [Figure 1(b)]. Also, in contrast to the merged classes of the character dataset, the
word model had to classify between upper and lower case characters for each letter in the alphabet.
Taking these challenges into account, the final accuracy of the model was on a satisfactory level.

6 Conclusion/Future Work

We set out to address the challenge of recognizing English handwriting. We started by creating a
character recognition CNN; our best performing model was a ResNet model which achieved 88%
accuracy. We then pivoted to word-level handwriting recognition; we implemented a CNN to RNN
model with LSTM cells. Our best model used a 3 layer CNN and achieved 77% character level
accuracy. This model worked better than the 1 layer model because the 1 layer model overfit the
training set; making the neural net deeper helped counteract this. Our next step if we had more time
would be to improve the accuracy of our word-model by trying a multidimensional RNN like the one
used by Graves and Schmidhuber [10]. We would also try to implement a post-processing neural
network which analyzes the output of the word model and corrects it to the closest valid English word.
We also wanted to adjust our model so that it can handle words longer than six letters. Finally, we
would also try to use word segmentation software to separate words out from a larger image of text
and then run them through our model, allowing us to run entire pages of text. From the core model
we’ve built, there are many directions with which to explore and apply our work if we had more time.

7 Contributions

Both team members contributed equally and were involved with the creation of both models. However,
Connor focused more on the character-level ResNet while Matias focused on the word-level CNN-
RNN. Since the word-level model was more complicated, Connor also wrote the project milestone.
The proposal, poster, and report were written together.

References

[1] Ba, J., Kingma, D. Adam: A Method for Stochastic Optimization. (2014) https://arxiv.org/abs/1412.6980

[2] Balci, Batuhan, Dan Saadati, and Dan Shiferaw. "Handwritten Text Recognition using Deep Learning."
CS231n: Convolutional Neural Networks for Visual Recognition, Stanford University, Course Project Report,
Spring (2017).

[3] Bansal, D. Segmenting Handwritten Paragraphs into Characters (2016) https://github.com/dishank-
b/Character_Segmentation

[4] Bottou, Léon, et al. "Comparison of classifier methods: a case study in handwritten digit recognition."
Pattern Recognition, 1994. Vol. 2-Conference B: Computer Vision & Image Processing., Proceedings of the
12th TAPR International. Conference on. Vol. 2. IEEE, 1994,

[5] Chollet, Francois et al. Keras. (2015) https://github.com/keras-team/keras
[6] Clark, A., et al. Pillow: the friendly PIL fork. http://doi.org/10.5281/zenodo0.44297

[7] Cohen, G., Afshar, S., Tapson, J., & van Schaik, A. (2017). EMNIST: an extension of MNIST to handwritten
letters. Retrieved from http://arxiv.org/abs/1702.05373

[8] Eikvil, Line. "Optical character recognition." citeseer. ist. psu. edu/142042. html (1993).

[9] Gers, F., Schmidhuber, J. and Cummins, F. 2000. Learning to Forget: Continual Prediction with LSTM.
Neural Comput. 12, 10 (October 2000), 2451-2471. http://dx.doi.org/10.1162/089976600300015015

[10] Graves, Alex, and Jiirgen Schmidhuber. "Offline handwriting recognition with multidimensional recurrent
neural networks." Advances in neural information processing systems. 2009.

[11] He, K., Zhang, X., Ren, S., Sun, J. Deep Residual Learning for Image Recognition. (2015)
https://arxiv.org/pdf/1512.03385.pdf

[12] He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on
computer vision and pattern recognition. 2016.

[13] Ioffe, S., Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal
Covariate Shift. https://arxiv.org/abs/1502.03167

[14] Marko, R. python-mnist 0.5 https://github.com/sorki/python-mnist

[15] Marti, U., Bunke, H. The IAM-database: An English Sentence Database for Off-line Handwriting Recogni-
tion. Int. Journal on Document Analysis and Recognition, Volume 5, pages 39 - 46, 2002.

[16] Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving,
Michael Isard, Rafal Jozefowicz, Yangqing Jia, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané,
Mike Schuster, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Jonathon Shlens, Benoit Steiner, Ilya
Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqgiang Zheng. TensorFlow: Large-scale
machine learning on heterogeneous systems, 2015. Software available from tensorflow.org.

[17] NIST Special Database 19. NIST Handprinted Forms and Characters Database.
http://doi.org/10.18434/T4H01C

[18] Pham, Vu, et al. "Dropout improves recurrent neural networks for handwriting recognition." Frontiers in
Handwriting Recognition (ICFHR), 2014 14th International Conference on. IEEE, 2014.

[19] Simard, Patrice Y., David Steinkraus, and John C. Platt. "Best practices for convolutional neural networks
applied to visual document analysis." ICDAR. Vol. 3. 2003.

[20] Srivastava, Nitish, et al. "Dropout: A simple way to prevent neural networks from overfitting." The Journal
of Machine Learning Research 15.1 (2014): 1929-1958

[21] Travis E, Oliphant. A guide to NumPy, USA: Trelgol Publishing, (2006).

