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Abstract—We present a supervised learning method for exer-
cise recognition and transcription. Our algorithm ingests micro-
electromagnetic (MEM) sequences recorded by a wearable device
during a workout set and outputs both the type of exercise
performed and the number of repetitions completed. Our model
consists of a 1-D convolutional layer whose output is fed into a
Bidirectional Long Short-Term Memory Recurrent Neural Net-
work (BLSTM). Because exercise transcription is a many-to-many
sequence prediction problem where input and output sequences
are unaligned and different in length, we use Connectionist
Temporal Classification (CTC) Loss to train the network. Our
model generalizes to new users not included in the training set and
achieves near-perfect accuracy in transcribing their workouts.

Keywords—Convolutional Neural Networks, Bidrectional Long
Short-Term Memory, Connectionist Temporal Classification, Wear-
able Technology.

I. INTRODUCTION

Many wearable devices contain Micro Electro-Mechanical
(MEM) sensors, tiny accelerometers and gyroscopes embed-
ded into the device that collect data describing the device’s
movement. Existing algorithms that interpret this MEM data
can recognize a diverse set of gestures and human activities
with remarkable accuracy [8].

Avid weight-lifters and physical therapy patients often
write down their sets to monitor their progress and stay on
top of their exercise regimens. Manually recording workouts
at the gym is imprecise and can interrupt the flow of a
workout. To keep track of a physical therapy prescription,
physical therapists usually rely on exercise logs taken by
their patients. However, patients could make mistakes when
recording exercises or they might exaggerate or misrepresent
how closely they are adhering to the prescription. A wearable
device capable of accurately transcribing exercises could serve
as a simple, high-fidelity method of exercise regimen logging.

Here we present a deep-learning model that accurately
transcribes weight-lifting workouts. Our model accepts as input
a time-series of MEM data recorded during the workout and
outputs a transcription of the exercises performed. The model
distinguishes between four weight-lifting exercises: dumbbell
curl, barbell bench press, power clean and back squat.

There are two main challenges inherent to applying super-
vised learning to exercise transcription: (1) training a learning
model demands large-scale data collection from many weight-
lifters and (2) any MEM time-series data we do collect is
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unaligned— that is, the beginning and end of each repetition
in a set is not annotated.

(1) To make data collection scalable we’ve developed an
Apple Watch app that records MEM data for a lift and allows
the user to easily label the MEM sequence with the type
and number of repetitions performed. (2) Furthermore, we’ve
implemented a deep-learning architecture to overcome the
alignment problem. The architecture was inspired by work in
Natural Language Processing to overcome a similar alignment
challenge. It consists of a 1-D convolutional layer whose
output is fed into Bidirectional Long Short-Term Memory
Recurrent Neural Network (BLSTM). We call this a Long-
Term Recurrent Convolutional Network, or LRCN, as this is
a version of the model architecture pioneered by Donahue et
al., which uses a Convolutional Neural Network as a feature
extractor for a Long-Term Short Memory Recurrent Neural
Network responsible for sequence prediction. [2] Because
exercise transcription is a many-to-many sequence prediction
problem where input and output sequences differ in length and
are unaligned, we use Connectionist Temporal Classification
(CTC) Loss to train the network.

Our model achieves near-perfect accuracy in transcribing
the workouts in our dataset. Most importantly, the model
generalizes to new users not included in the training set.

II. RELATED LITERATURE

Existing methods for exercise and gesture recognition can
be grouped into five general categories: (1) temporal warping
models, (2) vanilla machine learning models that rely on
substantial feature engineering, (3) Hidden Markov Models
(HMM), (4) convolutional neural networks, and (5) recurrent
neural networks. (1) The uWave algorithm developed by Liu et
al. is representative of temporal warping models [9]. Temporal
warping models like uWave work remarkably well for small
datasets, but perform worse than other models as the scale of
the training dataset increases. (2) Several other studies have
designed intricate feature engineering processes that take raw
MEM data as input and build informative feature vectors that
are then fed into simple machine learning models (support
vector machines and feed-forward neural networks) [4]. For
example, Manini et al.’s approach extracts feature vectors
encoding frequency and intensity from the raw MEM signal
and feeds those vectors into a support vector machine classifier.
(3) Since MEM data is naturally sequential in nature, Hidden
Markov Models have long been a popular approach. Hoffman
et al. presented the seminal paper on HMM applied to gesture
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Fig. 1. The data-collection process on our RepKit Apple Watch app.

recognition [7]. In their and most other models, an HMM
is trained for each activity or gesture. (4) Duffner et al
recently presented a powerful convolutional neural network
architecture for gesture recognition [3]. Finally, (5) Lefebvre et
al. developed a recurrent neural network model that leveraged
BLSTM cells to accurately label gestures [8].

The above works inspire our model in a variety of ways,
some more direct than others. However, in most of these stud-
ies, the training data was aligned. Few studies in exercise and
gesture recognition have tackled unaligned activity recognition,
as we hope to do.

III. PROBLEM FORMULATION

The task at hand is to predict the exercise sequence
performed during a given MEM input sequence. This problem
can be framed as a many-to-many sequence prediction task
where input and output sequences are unaligned.

Formally, an input MEM sequence (%) can be represented
by an n x t(Y) matrix where n is the dimensionality of the
input sequence and ¢(") is the length of the sequence. The
Apple Watch outputs 12 MEM readings so n = 12. The output
sequence y(*) can be represented by a /(*) dimensional vector
of exercise labels drawn from some set of exercises E. Our
goal is to predict some sequence (*) that matches y(¥).

(9
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IV. DATA COLLECTION

Our goal was to design a deep learning model that could
run on today’s wearables. This goal necessitated a dataset
that accurately reflected in-production technology. We chose
to focus on the Apple Watch since it has the largest market
share within the space. [5] There are no existing datasets with
the sample rate and feature data required for our task.

To collect data from both our research team and colleagues,
we focused on building a scaleable pipeline to record and label
data. The pipeline built consists of three phases:

A. watchOS app

The RepKit watchOS app allows participants to quickly
record and label exercises and their corresponding repetitions
(Figure 2). A participant first selects an activity to record.

Once recording, RepKit engages both the accelerometer and
gyroscope, which samples processed motion data at 100Hz.
Each processed motion unit is a 12-dimensional vector which
provides the attitude, torque, gravity, and acceleration (each of
which are 3-dimensional vectors over an X, y, and z axis).

Attitude provides the orientation of the device (as pitch,
roll, and yaw) with respect to a given reference frame. Torque
provides the rotational acceleration of the device with respect
to the device frame (i.e., along the device’s own axis). Gravity
provides the gravitational acceleration of the device with
respect to the device frame, and acceleration provides the
positional acceleration of the device with respect to the device
frame.

All of the accumulated motion data is kept in-memory until
a participant taps finish, at which point they can label it with
the number of repetitions. After saving the set, the number
of sets is updated and displayed on the application’s Active
Workout view. After a participant has recorded a satisfactory
number of sets, the participant presses the save button and all
of the unsychronized exercise archives are then transferred to
the i10S app.

B. iOS app

watchOS syncs with a counterpart iOS application to ag-
gregate data into a more permanent medium. Once on device,
users can also choose to disregard a certain recorded set by
viewing the annotation and deleting it. Once data has been
validated, this information is then transmitted to a centralized
web-application.

A phone equipped with GPS also allows us to use location
services to identify when users are close to a supported
gymnasium. During data collection, this feature allowed us
to “gameify” our application and reminded users to annotate
their workouts.

C. Central database

In order to accumulate data from multiple mobile devices,
we built a centralized repository for all our device data.
The application built supports standard REST operations to
collect all the motion data and labels recorded on the watch
application.

This method also allows for dynamic integration with our
training infrastructure. Via a GET request, our Tensorflow
training code can download the most recent training exam-
ples and add these to our train/dev/test sets. We archive the
data locally on-device to make sure that we are performing
evaluation on a static dataset.

D. Dataset Split

Of the six weight-lifters that participated in data collection,
five were included in the train set. The dev and test sets
were made up of the examples from the last participant. We
explicitly excluded the last participant from the train set. The
exact makeup of our dataset can be found in Fig. 2. We
chose this dataset split so that our experiments would best
reflect how an exercise transcription model might actually be
deployed in a real world setting. Presumably, the model would
not have access to training data for new users. Furthermore,



Dataset Split
Train Dev Test
1606 examples 249 examples 249 examples
5 participants 1 unseen, random participant

Fig. 2. The size and makeup of our three dataset splits.

this dataset split allows us to confirm that our model is
learning patterns inherent to weight-lifting exercises, not just
memorizing participant idiosyncrasies.

The train set was used to train the weights of the model,
the dev set used to tune hyperparameters and assess different
architecture, and our test set was used exactly once at the end
to assess the performance of our best model.

E. Re-rack Labels

Initially, our output sequences consisted only of the ex-
ercises performed. However, when collecting data, the watch
would also record participants re-racking weights after a set.
Failure analysis on preliminary models performed by plot-
ting BLSTM softmax outputs against MEM input sequences
showed that our model often attempted to classify the “re-rack”
motion as one of the 4 exercise classes. This led to high levels
of avoidable bias in our preliminary experiments. We combated
this issue by adding 4 exercise-dependent “re-rack” labels to
the model’s class vocabulary and rebuilding our dataset such
that each output sequence contained a new “re-rack” label
associated with its exercise type. As an example, this trans-
formed output sequences from [“CURL”, “CURL”, “CURL”]
to [“CURL”, “CURL”, “CURL”, “RERACK_CURL”]. By
doing this, we increased the expressiveness of our model and
substantially decreased avoidable bias.

V. MODEL ARCHITECTURE

Our final model architecture combined a shallow 1-D Con-
volutional Neural Network (CNN) with a Bidirectional Long
Short-Term Memory Recurrent Neural Network (BLSTM)
optimized over a Connectionist Temporal Classification (CTC)
loss function [6].

A. Bidirectional Long Short-Term Memory

As discussed above, the MEM input sequence can be
represented as a time-series matrix z(*) € Rt where n
is the dimensionality of the input sequence and t() is the
length of the sequence. Long Short-Term Memory Recurrent
Neural Networks (LSTM) are capable of capturing long-term
dependencies in time-series data and are, thus, well-suited for
modeling MEM sequence patterns [1]. We realized that the
final “re-rack” motion of free-weight exercises contains a lot
of information about the nature of the exercise itself. This
led us to opt out of vanilla LSTMs in favor of Bidirectional
LSTMs (BLSTMs). At each time-step, BLSTMs can use future
information as well as past information to inform its predic-
tions. Our BLSTM (Fig. 3.iii) outputs a softmax probability
distribution over the possible exercise labels at each time-step.
Specifically, at each time-step ¢ and example (i) the BLSTM
output is: '

pe(a2®) val) € B @

MEM Input Sequence (i)

Jl AN AI ul u| Iul | I‘—I

!
NN

4 ' 4 '

1-D Convolutional Layer w/ Dropout (ii)

Bl(llIOLtIOIIcll LSTM Ld\ er w Dmp(mt 111

V V v v

Dense Layer (iv)

CTC Loss w/ / Beam Search Decoder (v )

Exercise Transcription (vi)

Fig. 3. The model architecture.

where a( Y ¢ E is some exercise label. Note that a( " is drawn
from £ = EU{e}, adding the e label is necessary for applying
CTC loss, which we describe below. Fig. 6 shows the BLSTM
softmax output for each time-frame.

B. Connectionist Temporal Classification

To train a BLSTM-RNN we must define some loss func-
tion over our training dataset. As discussed above, the input
sequences x(¥) and output sequences y?) in our training set
are unaligned and differ greatly in length. Thus, defining a loss
function for the model is non-trivial: it would not suffice to
define a simple cross-entropy loss term for the softmax output
at each time-frame, since the correct output for that specific
time-frame is unknown, even for labeled examples.

Connectionist Temporal Classification (CTC) loss is often
used in speech recognition tasks where input and output



sequences are unaligned [6]. CTC loss deals with different
length input and output sequences by introducing the idea of
a valid alignment. A valid alignment for an output sequence
y® e EY is a sequence of labels a() € E" that when
collapsed produce the sequence 3(*). To collapse an alignment,
we simply combine all adjacent labels of the same type and
remove € labels. This is shown above in Fig. 3.v. Given the
softmax output of the BLSTM from above, the probability of
an alignment is given by the following equation:

o)

a®|z®) Hp atz)|x 3)

For a given output y(i), we can compute the set of all valid
alignments of length ¢(¥) which we denote A(*). Given the
softmax outputs of the BLSTM, we can then compute the
probability of the given output by marginalizing over all
possible alignments:

D) = Y pa@)z®) )

a® AW

We can now comg)ute the probability that our model assigns for
the true label y To train our model, we seek to maximize
the likelihood of observing our training set given the input
sequence z(¥). With this intuition, we can define the following
loss function:

> —logp(y?|z?) &

i=1

£(model) =

The loss function above can be efficiently computed using
dynamic programming. To perform inference, we can decode
the softmax outputs using a beam search over all alignments
of length ¢(*.

In the preliminary stages of our research, we attempted
to train a simple BLSTM using the CTC loss function. This
proved unsuccessful because our input MEM sequences were
sampled at 100 Hz and were, thus, too long for the BLSTM
to handle. We resolved this issue using a variety of down-
sampling techniques.

C. Downsampling and Convolutional Layers

Our baseline model, a simple BLSTM using the CTC loss
function, was wholly ineffective at predicting both exercise
type and count. We learned that its failures were due to the
high-sample rate associated with each of the input sequences.
For many of the input sequences, the number of timesteps were
of the order of one thousand. As it turns out, LSTMs— though
conceived to solve this very issue— are limited in their ability
to learn long-term dependencies in sequences of this length.
We experimented with several downsampling techniques and
saw drastically improved results.

Our first set of experiments utilized a naive downsampling
technique that, for each z(¥), simply reduced the dimensional-
ity of input sequence z(*) by replacing it with a new sequence
() that consisted of every kth timestep of x, where k was
a tuneable hyperparameter. Naive downsampling proved to be
very effective, achieving high accuracy upon reducing ¢ for
each input sequence by a factor of 20.

We then experimented with rebinning the time sequences.
Given that n is the number of features and ¢ is the number of
timesteps for some sequence, we reshaped each n X ¢ sequence
to be of shape n x %, where k was some tunable hyper
parameter. We used neighborhood averaging in the process of
rebinning the data in order to minimize the information lost by
the preprocessing step. This approach was less effective than
the naive approach, possibly due to the smooth and thus less
expressive nature of the newly processed input sequences.

Our final attempt at reducing the timestep dimensionality
of each input sequence relied not on preprocessing, but on
a fundamental change in our model architecture. We added
a 1-D Convolutional Layer to the model (see Fig. 3.ii. The
convolutional layer accepts z(¥) as input and outputs directly to
the BLSTM. While this does not exactly downsample the data,
it does change the dimensionality of each sequence from n x ¢
toex &0 4 1, where ¢, f and s are the number of filters, the
filter width and length of stride, respectively. This was by far
the most effective method of reducing timestep dimensionality
as it both compressed the data comprehensively and added
expressiveness to the model. The convolutional layer is able
to shrink the input sequence to a reasonable length, while also
interpreting the details offered by high frequency sampling.

D. Full Architecture

At prediction time, our end-to-end model accepts an MEM
sequence as input (Fig. 3.i)) and feeds it through a 1-D
convolutional layer with large stride (Fig. 3.ii). The condensed
sequence emitted by the convolutional layer is fed into a
BLSTM recurrent neural network (Fig. 3.iii). The outputs of
the BLSTM are passed through a dense layer with softmax
output (Fig. 3.iv). Finally, these softmax outputs are decoded
using a CTC beam search decoder (Fig. 3.v) producing an
exercise transcription (Fig. 3.vi).

VI. EXPERIMENTS & RESULTS
A. Model and Hyperparameter Experiments

We performed an iterative hyperparameter search. On each
iteration we chose hyperparameters at random within some
range, and then narrowed our range around the hyperparameter
values that yielded the best results. Finally, once we narrowed
the range of hyperparameter values sufficiently, we performed
a small grid search. In total we ran twenty-five experiments to
tune our model. For each experiment, we built our model with
specific hyperparameters, trained it on the train set and evalu-
ated it on the dev set. We assessed each model by measuring
its set transcription accuracy, which is computed by counting
the fraction of examples that are accurately transcribed. An
example is accurately transcribed if the model reports both
the correct exercise and the correct number of repetitions.

In Fig. 4, we’ve outlined some key results from our
model and hyperparameter search. Model performance ben-
efited greatly from the addition of the “re-rack” label. As we
discussed above, the decision to add the “re-rack” label was
motivated by a failure analysis that involved plotting BLSTM
output against the input MEM sequence. An example of such
a plot is given in Fig. 6. After adding the “re-rack” label, we
sought to strike a balance between model complexity (number
of filters and hidden units) and regularization strength (dropout



Model Accuracy: Set Transcription
Model Type Train Dev Ac- | Training
Accu- curacy Time
racy
BLSTM-50 77.2% 73.0% 38 min
(without re-rack)
BLSTM-50 84.2% 78.3% 60 min
(with re-rack)
BLSTM-150 95.8% 96.9% 225 min
(with re-rack)
CONV-64 99.5% 97.5% 36 min
BLSTM-128
(with re-rack)

Fig. 4. The exercise recognition and set transcription accuracy of four model
versions. The addition of a “re-rack” label significantly increased accuracy in
the dev set, as did the addition of more hidden units.

rate) in order to improve the performance of the model.
Ultimately we found a sweet-spot that eliminated avoidable
bias while also avoiding overfitting. Here it is worth noting
that including a convolutional layer before our BLSTM layer
both increased our accuracy and dramatically sped up training
time, reducing the training time of the model from 3 hours
and 45 minutes to 36 minutes.

In our final model we use a dropout rate of 10%, batch
size of 16 and learning rate of 0.001. The convolutional layer
consists of 64 filters each of size 50. Our stride is of length 20.
The BLSTM contains 128 hidden units and 1 hidden layer. It
is also worth noting that dropout in the BLSTM was applied
only to input and output channels, not the state channel. All of
these parameters were chosen via our hyperparameter search.

B. Results

After experimentation, we deemed the Conv-64 BLSTM-
128 model using “re-rack” labels to be our most robust model.

Learning Curve: CONV-64 BLSTM-128
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Fig. 5. The learning curve of the CONV-64 BLSTM-128 model on both the
training set and the dev set. The vertical axis is the transcription accuracy.
Correctness is defined as the identification of both the correct exercise type
and the repetition count.
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Fig. 6. The softmax output of the BLSTM layer aligned with the MEM
sequence input on a 7 curl exercise. Note that the softmax output of the class
Re-rack approaches 1 at the end of the workout.

As seen in Fig. 5, the model exhibited both low bias and
relatively low variance, achieving a 99.5% set transcription
accuracy on the training set and a 97.5% set transcription
accuracy on the dev set. The model achieved a test set
transcription accuracy of 98.4%.

In Fig. 6 we plot the BLSTM softmax output on a seven
curl exercise. High-probability output for the “curl” label are
correctly correlated with the yaw oscillation. Further, one
can observe that the “re-rack” label associated with the curl
exercise approaches 1 at the end of the sequence as desired.
A closer examination of the input sequences reveal similar
relationships between other features and the softmax output
of each exercise class. A similar plot can be produced for all
four exercise types. During failure analysis, we discovered that
many of the errors made by the model were likely caused by
mislabeled data.

VII. CONCLUSION & FUTURE WORK

We set out to apply deep learning methods to the task of
exercise transcription and we found with near-perfect results.
The most promising aspect of our research was the model’s
ability to generalize its learning to unseen weightlifters. Our
model thus has the potential to provide value in real world
applications.

We must run more tests in order to confirm its efficacy
on the unseen weightlifter. Upon completing this task, the
brunt of the future work will be in expanding the functionality
of the model. As it stands, the model does not detect the
beginnings of workouts; it is only capable of classifying the
end of recorded exercises. To resolve this, we would build a
simple model capable of solving the similar speech recognition
“trigger word detection” task. Creating a two-model pipeline



would allow future users to move in and out of workouts
without ever turning off the program.

The model’s near-perfect accuracy on unseen data is evi-
dence of the effectiveness of LRCNs on MEM sequence data.
The model shows great promise and lays a foundation for
future exercise transcription systems.

VIII. CONTRIBUTION

All members contributed to all parts of the project. Geoff
and Sabri focused on building the model architecture, tuning
hyperparameters, running experiments, the poster and the final
writeup. Pierce and Rooz focused on developing the Apple
Watch app, iOS app, Heroku database, and dataset pipeline.
All members contributed to the data collection effort.

IX. IMPLEMENTATION

The implementation of the dataset collection system,
the model and the experiment harness is available at:
https://github.com/piercefreeman/RepKit
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