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Abstract

In this paper, we develop an algorithm that,
given pictures of food, is able to predict the
ingredients and generate the cooking proce-
dures. Our algorithm, ChefNet, is a joint
embedding model consisting of a 121-layer
convolutional neural network (CNN) and a
recipe model made up of two long short-term
memory network (LSTM) encoders, one for
ingredients and one for instructions. Our
model is trained on a subset of RecipelM
dataset (Salvador et al., 2017), which is a new
large-scale, structured corpus of over one mil-
lion cooking recipes and 800, 000 food images.
Instead of using ResNet-50 to learn the im-
age’s encodings, we use DenseNet-121 before
the softmax layer in our model. We compare
the performance of our model to that of the
original one and find that our model has bet-
ter performance on a reduced dataset.

1. Introduction

Food is central to all human life. Its significance ex-
tends beyond nutrition and health, shaping our lives
as it provides us with comfort, relaxation, and reward.
All of us, at one time or another, have turned to food
for comfort, for coping with stress, for controlling our
emotions, and for satiating desires. However, finding
nutritious, satisfying and easy-to-cook food may not
be a easy task for many. Food recognition technology,
if developed well, may help people gain insights into
the food they consume, resulting in a healthier and
more satisfying diet.

These days, with the plethora of online recipe collec-
tions and user-uploaded pictures of food, it becomes
possible to train machines to automatically under-
stand food preparation by jointly analyzing ingredient
lists, cooking instructions and food images (Salvador
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et al.,, 2017). In this context, we introduce our food
recognition algorithm ChefNet, which studies the in-
gredients and cooking procedure of given food images
and thereby matches given food images to their respec-
tive recipes.

Query Image Retrieved Recipe

&

Ingredients Instructions

sushi rice 1. Make 2 bowls of sushi rice.
salmon 2. Slice the salmon into 24 ultra-thin slices, and cut the
avocado avocado and cream cheese into long, thin strips.
cream cheese 3. Place a small bowl-worth of sushi rice on plastic wrap
&

nori and spread it out to the size of a nori sheet.

4. Cut the rolls while wiping the knife with a wet cloth
between each cut

5. Shown in the photo on the left is avocado, and to the
right is mini cucumber.

Query Image Retrieved Recipe
Ingredients Instructions
butter 1. Melt 1 tablespoon butter with 1/2 tablespoon olive ol in
olive oil saucepan over medium heat.
sweet onions 2. Add onions and saute, stirring every few minutes, until
portabella they are caramelized, about 15-20 minutes.

mushrooms .
celery 3. (if soup is too thick, thin with a little more hot broth).
4. Season to suit your taste with salt and freshly-cracked
black pepper.
5. Servein deep bowls, gamished with a sprinkle of
minced, fresh parsley.

garlic cloves

Figure 1. Illustration of instances of query image paired
with its matching recipe (top) and non-matching recipe
(bottom)

Our model, ChefNet, is a joint embedding model con-
sisting of a 121-layer convolutional neural network and
a recipe model made up of two LSTM encoders, one
for ingredients and one for instructions. Our model
takes a food image as an input and outputs the ingre-
dients and cooking instructions corresponding to that
of the image’s. We train ChefNet on a subset of the
recently released RecipelM dataset (Salvador et al.,
2017), which contains structured corpus of over lm
cooking recipes and 800k food images.

2. Related Work

In 2014, Bossard et al. (Lukas Bossard & Gool, 2014)
introduced the Food-101 visual classification dataset
and set a baseline of 50.8% accuracy. Later, with the
improvement of both the size and the content of food
image dataset, the accuracy of food recoginiton has
also be improved. With the impetus for food image
categorization, subsequent work by (Chang Liu et al.,
2016), (Austin Myers et al., 2015) and
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(Ferda Ofli et al., 2017) improved this result to 77.4%,
79% and 80.9%, respectively. In 2017, Salvador et
al. introduced RecipelM, a new large-scale, struc-
tured corpus of over 1m cooking recipes and 800k food
images. As the largest publicly available collection of
recipe data, RecipelM affords the ability to train high-
capacity models on aligned, multi-modal data (Sal-
vador et al., 2017).

Previously, food recognition algorithms are used to en-
hance the accuracy of dietary measurement. For in-
stance, Ofli et al. used image recognition to study the
misalignment of how people describe food images ver-
sus what they actually depict, using the ideas from
CNN. They showed that the difference between how
machines and humans label images relates to a num-
ber of health outcomes observed at the county level
(Ferda Ofli et al., 2017).

Food recognition algorithms have also been used to
solve the practical and socially relevant problem of
demystifying the creation of a dish that can be seen
but not described. In 2010, Yang et al. proposed a
representation for food items that calculates pairwise
statistics between local features computed over a soft
pixel level segmentation of the image into eight ingre-
dient types (Shulin, Lynn). In 2016, Liu et al. pro-
posed a new CNN-based food image recognition algo-
rithm to derive the food information (e.g., food type
and portion size) from food image effectively and effi-
ciently (Chang Liu et al., 2016). In 2017, Salvador et
al. trained a neural network to find a joint embedding
of recipes and images that yields impressive results on
an image-recipe retrieval task (Salvador et al., 2017).

Known for their powerful performance in image
recognition tasks, convolutional neural networks have
seen no short of remarkable developments in recent
years, with the continuous advents of newer, deeper
and better-performing CNN architectures. In 2015,
ResNet-50 and ResNet-101 architectures were intro-
duced for their relative ease to optimize and their
higher accuracy gained from considerably increased
depth. (Kaiming He et al., 2015) In 2016, Dense Con-
volutional Network (DenseNet) was introduced, which
benefits from connections between each layer to ev-
ery other layer in a feed-forward fashion. (Gao Huang
et al., 2016) DenseNets generally achieve much better
performance on image recognition tasks as they alle-
viate the vanishing-gradient problem and strengthen
feature propagation and reuse, substantially reducing
the number of parameters needed.

3. Data

We use the same dataset as in the im2recipe model
(Table 1) (Salvador et al., 2017). Duplicates and
recipes sharing the same image were removed, as were
instances with unwanted characters or without dis-
criminative food properties. We investigate model
performance with the reduced training and validation
sizes of 20,000 and 2,000 in alignment with our com-
putational resources (Figure 2).

Partition ~ Number of Recipes Number of Images
Training 720,639 619,508
Validation 155,036 133,860
Test 154,045 134,338
Total 1,029,720 887,706

Table 1. Recipe 1M Dataset. Number of samples in train-
ing, validation and test sets, accordingly.
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Figure 2. Size of data used in the present study (blue) com-
pared to the size of data used on im2recipe.

4. Model

Our model is based on the im2recipe model (Salvador
et al., 2017) with several modifications. The model is
summarized in Figure 3.

4.1. Problem Formulation

Our goal is to maximize the similarity between the
encodings of food images and the encodings of their
matching recipe, and minimize the similarity between
the encodings of non-matching recipe pairs.
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Figure 3. ChefNet Model Architecture

4.2. Image Embeddings

Salvador et al. used the ResNet-50 (Kaiming He et al.,
2015) models to encode the image, and in the present
study, we extend this model by experimenting with
newer and deeper state art convolutional neural net-
works, namely DenseNet-121 (Gao Huang et al., 2016),
and ResNet-101(Kaiming He et al., 2015) .

We used a DenseNet, as they have been shown to
improve flow of information and gradients through
the network, making the optimization of very deep
networks tractable (Gao Huang et al., 2016). Fur-
thermore, ResNet-101 was used to explore whether a
deeper network may perform significantly better.

We employ transfer learning to accelerate the train-
ing process by using CNNs that were pre-trained on
ImageNet(Deng et al., 2009).

4.3. Recipe Embedding

The embedding model for recipes utilizes two LSTM
neural networks. A bi-directional LSTM was used for
the ingredient list due to the unordered nature of the
data. A forward LSTM was used to output a fixed
length representation of the instructions. The ingredi-
ent and instruction embeddings are then concatenated
to form the encoding of the recipe.

4.4. Joint Neural Embedding

Let v, and r; be the image and recipe embeddings
respectively. We then map the recipe and image rep-
resentations to a joint embedding space using a fully
connected layer: ¢ = WEr, + b8 ¢¥ = WV, +
b’. Where WE, Wv bR bV are also parameters to be
learned.

4.5. Training

The model is trained end-to-end with positive and neg-
ative recipe-image pairs (¢, ¢¥). We choose match-
ing image-recipe pairs from the training set at random
with 20% probability and non-matching pairs with
80% probability. Cosine similarity loss was used as
the loss function:

Leos((6%,6"),y) = {1 — cos(¢™,¢"),

max(O, COS(¢R7 ¢v)) )

with cos(.) as the normalized cosine similarity and «
as the margin. y = 1 refers to a positive pair, and
y = —1 refers to a negative pair. Loss was minimized
using the ADAM Optimization algorithm (Kingma &
Ba, 2014).

Salvador et al. suggest that simultaneously training
both modalities (recipe and images) may lead to di-
vergent results (Salvador et al., 2017). Thus, we adopt
a two-stage optimization process where we first fix the
weights of the image network, which are found from a
model pretrained on ImageNet (Deng et al., 2009), and
learn the recipe encodings. Then we freeze the recipe
encodings, and learn the image network. We alternate
the weight fixing every three epochs.

5. Results and Discussion
5.1. Preliminary Experiments

Preliminary experiments are conducted to determine
optimal settings for hyperparameters.

First, we compare various data preprocessing tech-
niques such as random crop followed by center crop,
center cropping alone, random horizontal flipping,
scaling as well as rotation on a training size of 64. We
find that random crop followed by center crop performs
better than center cropping alone - after 4 epochs the
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latter achieves a cosine loss of 0.2283 whereas the
former achieves a considerably better cosine loss of
0.1147.

Next, for each of the CNN architectures, we select
a learning rate based on the model performance af-
ter 10 epochs. An example of such an experiment is
shown in Figure 4. The selected learning rates are
1075 for ResNet-50, 10~* for DenseNet-121, and 1076
for ResNet-101.
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Figure 4. Preliminary experiment used to determine learn-
ing rate for the ResNet-50 model.

5.2. Comparison of CNN architectures
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Figure 5. Performance of models using different CNN ar-
chitectures

We conducted the training procedure on each of the
three CNN architectures — ResNet-50, ResNet-101 and
DenseNet-121. We used a batch size of 50 and trained
for 100 epochs for each model, the performance of
which are compared in Figure 5. The results show that

using the DenseNet-121 architecture for image embed-
ding achieves the best performance on the image cap-
tioning task, followed by ResNet-101 and ResNet-50
(which was used in the original im2recipe models).

Interestingly, DenseNet-121 only has marginally
greater computational cost to train compared to
ResNet-50 (roughly 26 mins more to train 100 epochs).
On the other hand, ResNet-101 took almost twice
as long as ResNet-50 (21.3 versus 13.1 hours for 100
epochs). These results are depicted in Figure 6.
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Figure 6. Computational cost for training models using dif-
ferent CNN architectures

5.3. Limitations

The main limitation in the present study is that we
were only able train on a 20,000 images, which is 1/40
the size of the original dataset.

The evaluation metric used by Salvador et al. was
based on whether the target recipe had a similar-
ity that ranked among the top 1/5/10 recipes among
1,000 randomly chosen recipes. However, given the
large variance of food images and the complexity of
the problem, training on the reduced image dataset
simply was not enough to achieve good performance
on this particular evaluation metric. Therefore, we
used cosine loss as a heuristic for the model perfor-
mance. Through our investigation, we confirm that
a large training set is essential for performing well in
such a task.

Another limitation of our model was the inability to
conduct experiments using larger batch sizes, which
is known to lead to fewer parameter updates, greater
parallelism and shorter training times (Smith et al.,
2017). The benchmark model, im2recipe, used a batch
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size of 160, while we were limited to a batch size of 50
due to GPU memory constraints.

5.4. Future Directions

At first, obvious extension to this project would be
to train a model using the DenseNet-121 architec-
ture on the full dataset. This will allow us to more
aptly compare results to the current benchmark set
by im2recipe, which uses the ResNet-50. Our results
suggest that this model is likely to perform better.

The main modifications performed in this study is on
the image encoder portion, namely the structure of
the CNN. A related but unexplored issue would be to
explore whether or not a different recurrent neural net-
work architectures such as GRUs (Chung et al., 2014)
might perform better for a recipe-level encoding and
representation.

Finally, it would be interesting to investigate whether
or not the current algorithm and model could be gener-
alized to other ”recipes” such as assembly instructions
i.e., can we retrieve assembly instructions and materi-
als given the image of a product?

6. Conclusion

Food is an indispensable part of human life, happi-
ness and fulfillment. However, nutritious, satisfying
and easily cooked food is often hard to find. With the
advent of deep learning, food recognition technologies
may be enhanced to enable automated understanding
and investigation of food preparation by joint analysis
of food images, ingredient lists and cooking instruc-
tions.

In this paper, we introduce our food recognition
algorithm ChefNet, which studies the ingredients
and cooking procedure of given food images and
thereby match given food images to their respective
recipes. Our model is an extension of the im2recipe
model(Salvador et al., 2017), but instead of using
ResNet-50 to learn the input image’s encodings, we use
DenseNet-121 before the softmax layer in our model.
We also experiment with various means of data pre-
processing techniques, learning rate. As it turns out,
our best model uses DenseNet-121, which achieves
much lower cosine losses than ResNet-50 and ResNet-
101 architectures, at a negligibly higher computational
cost on our dataset.

Link to repository: https://github.com/kayliez/
DeepFood
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