Mask R-CNN Application:
Instance Segmentation in Driving Scenes

Xiao Lu Chen Luo Michelle Zhang
Department of Management Department of Electrical Department of Aeronautics
& Science Engineering Engineering Astronautics Engineering
xiaolu@stanford.edu chenl3@stanford.edu zhangmx@stanford.edu
Abstract

One of the major challenges in autonomous driving is the ability to understand
the environment including surrounding vehicles, traffic signs, and pedestrians at a
finer-grained level. In this project, we investigate and evaluate the performance of
the state-of-the-art model for instance segmentation, Mask R-CNN, on the newly-
released Mapillary dataset, whose images focus specifically on driving scenes.
We transfer the learning results from the pre-trained weights from COCO dataset
and fine tune the final layers for Mapillary images. The results show significant
improvement in precision measurements from the baseline, and surpassed the
benchmark in overall mean average precision.

1 Introduction

Deep learning techniques based on CNN backbones have become the top choice for complex computer
vision problems, by enabling efficient inferring knowledge in imagery [1]. However, the results are
still too simple compared to the complexity and diversity of human-level visual comprehension [2].
The goal of instance segmentation is to provide both object detection and pixel-level classification
for different instances of the same class. The finer granularity of instance-level understanding of the
images will add critical insights to the perception of autonomous driving. In 2017, the Mask R-CNN
network proposes a simple but effective strategy to perform instance classification and segmentation
with minimal computation overhead [4].

In this project, we implemented our algorithm on the newly released Mapillary Vistas Dataset
[3], which focuses on traffics and road environment. We apply a Mask R-CNN model that was
previously trained on the COCO dataset and fine-tune it for Mapillary images to obtain instance-level
segmentation outputs.

2 Dataset

The Mapillary Vistas dataset [3] contains 20,000 high-resolution street-level images on multiple
locations around the world. 37 object categories are labeled with pixel-wise instance-level annotations.

There is no published paper introducing the usage or implementation on the data quality because of
the novelty of the Mapillary dataset. Two other popular object detection and segmentation datasets,
CityScapes and COCO, are compared with Mapillary dataset here. Microsoft Common Objects
in Context (COCO) is a diverse set of general objects which provides a good baseline for image
recognition, segmentation and captioning. In comparison, Mapillary is characterized by its diversity
specific to traffic environment.

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

Compared to CityScapes dataset, the Mapillary dataset is closer to real-world application with a
variety of weather, season, and time of day. Moreover, Mapillary has a much better labeling quality
and is more fine-grained. So the general contour of the objects are preserved much better. This
requires our model to be more robust to learn the fine-grained labeling and tolerate diversity.

2.1 Pre-processing of Mapillary Dataset

The published results are evaluated over MS COCO data set. For reasonable comparison, we take
the intersection between the 80 object classes in MS COCO and the 37 instance-specific classes in
Mapillary. The intersection contains 11 object classes: Bird, Person, Bicyclist, Motorcyclist, Bench,
Car, Person, Fire Hydrant, Traffic Light, Bus, Motorcycle, and Truck, in addition to 1 background
class required by default.

To support training multiple images, all images are resized to the fixed size (1024x 1024 px by
default). The non-square image is padded with all zeros. The smallest side is 800 px and the largest
is trimmed at 1000 px.

2.2 Dataset Usage

We split the distribution of the dataset for training, development and testing as shown in Table 1.
Because we focus on only 11 classes, we leave out images which contain no instance of the interested
classes during training. Because filtering process depends on the mask threshold (explained in
methodology), we have different sets of images for run 1 and run 2 as they have different mask
threshold, even though their split sizes are identical.

Name | Training | Development | Test
baseline 20 10 -
run 1 4,096 512 -
run 2 4,096 512 -
run 3 16,384 1,024 1,024

Table 1: Train/dev/test set splits
3 Methods

3.1 Mask R-CNN Framework

Mask R-CNN [4], is an efficient and effective algorithm for instance segmentation. As an extension
of the Faster R-CNN model. The innovating aspect is that Mask R-CNN decouples class prediction
and mask generation. The original Faster R-CNN has two outputs for each candidate object: a class
label and a bounding-box offset. Mask R-CNN adds a third branch that outputs the object mask
extracting a much finer spatial layout of an object, Fig. 1. As a result, Mask R-CNN is capable of
performing object instance segmentation with much higher efficiency. The Mask R-CNN model that
we used is based on an open-source implementation by Matterport [6], built on Feature Pyramid
Network (FPN) and ResNet-101 as backbone.

box
regression

| fully connected

fixed size feature map

classification

head

RoIAlign layer

>

’

& ’ 67/; feature map
y 4

convolutional backbone

Figure 1: Mask R-CNN framework for instance segmentation [8]

3.2 Loss Function

Mask R-CNN adopts the same two-stage as Faster R-CNN:

The first stage, RPN (Regional Proposal Network) is left unchanged. RPN outputs k potential
bounding boxes with certain aspect ratios (anchors) and evaluate how good each of these anchors is
expected to be. The second stage outputs a binary mask for each Rol in parallel to predict the class
and box offset. Specifically, the mask is selected from the label of each Rol classification in parallel
by the dedicated classification branch.

Thus, the loss is defined for the three tasks on each sampled ROI: class prediction, bounding box
refinement and mask generation. Class prediction loss and bounding box regression loss are collected
from both RPN and mask generation stages, whereas mask loss is taken only from mask generation
stage. Mask loss is only defined per each individual class to avoid competition among other mask
outputs.

LRPN — Lr,class + Lr,boma Lmask = Lm,class + Lm,bom -+ Lmask7 L= LRPN + Lmask7

3.3 Hyperparameters Tuning

We first set up a baseline on run 1 with all default hyper-parameters and select learning rate (LR) and
mask threshold (MT) as hyperparameters of interests. We introduce the concept of mask threshold
to filter out image sizes below than the threshold value. This concept stems from two practical
considerations. First, when our Mask-RCNN model scales all input images down to a predetermined
size of 1024 by 1024, small objects from the original image (typically 4000 by 3000) will shrink to
even smaller objects in output, which become indistinguishable even by human eyes. Secondly, small
masks refer to objects either so small or so far away that they are less critical in driving decision
making.

We train the model on different mask thresholds but keeps at a learning rate fixed at 10~ (run 1
and 2). As shown in Fig. 2b, higher threshold turns out to result in higher loss in the initial stage of
training, but later converges to a similar level to that of run 2 with lower MT. For the remainder of the
project we train on MT = 322. We assume that objects smaller than this size appears small enough to
be safely ignored (see Fig. 2d).

As we are applying a pre-trained network to a new dataset whose classes and image resolutions are
different from the original COCO dataset, the learning rate must be tuned for the new dataset. We
train the model on run 2 with different learning rates for 8 epochs. As shown in Fig. 2a, LR = 10~3
yields lower loss than LR = 10~% and similar loss as LR = 10~2. Thus, we select LR = 10~ for the
remainder of the project. We keep weight decay of 0.0001 and momentum of 0.9 as default in the
given code.

Finally, we train the model on run 3, with 16,384 images in training set and 1,024 images in
development and test sets. We set LR to 1073 and MT to 322, and leave the rest of the hyper-
parameters to default. We train the model on 1 GPU and each mini-batch with 8 images for 8 epochs.
We also run 2 experiments: one for head classifier layers only (RPN, classifier and mask heads of
the network), i.e, we fix all parameters from earlier layers and only train the head classifier layers;
another one experiment for ResNet stages 5 and above after the top-layer classifiers have been trained.
Lastly, we repeat the procedure on run 3 with all 37-instance classes from the Mapillary dataset. The
training process is summarized in Table 2.

4 Results and Evaluation

The instance segmentation results on four randomly chosen Mapillary images from our test set is
shown in Fig. 3. The network achieves high confident-level on each detected object (white labels in
the image), in different lighting and road conditions.

4.1 Evaluation Metrics

One common approach to evaluate instance segmentation performance is average precision (AP)
over all possible classes under a certain JoU threshold. In this application, we define a positive
example with mask IoU greater than some IoU threshold.

—— MT =32*32
MT = 64*64

v o

'S

Train Loss

[N T]
Train Loss
w

~

200 400 800 800 1000 0 200 400 800 800 1000
Steps Steps

o

(a) Tuning learning rate (b) Tuning mask threshold

— 1l class, heads
11 class, 5+

— 37 class, heads

—— 37 class, 5+

Train Loss

N W B L o N @

K@-—~4>
%0 200 &0 @o 1000

o (d) Mask threshold
(c) training 11 and 37 classes

0

Figure 2: Hyperparameters tuning

Data LR MT | Epoch | class | layers
baseline | 10~2 | 5000 1 11 heads
baseline | 1073 | 5000 1 37 heads

run 1 107% | 642 8 11 | heads

run2 | 107% | 3272 8 11 | heads
run2 | 107° | 322 8 11 | heads
run2 | 1072 | 322 4 11 | heads
run2 | 1073 | 322 4 11 | heads
run3 | 1073 | 322 8 11 | heads
run 3 1073 | 322 8 11 5+

run 3 1073 | 322 8 37 heads
run 3 1073 | 322 8 37 5+

Table 2: Training summary

The value for IoU threshold is referenced from MS COCO dataset evaluation metrics [4] with fixed
10U threshold as 0.50 (AP 50), 0.75 (AP 75), as well as the average AP value over [0.50, 0.95] with
an increment of 0.05 (AP).

We consult results from Facebook and Matterport [6] evaluated on MS COCO dataset as benchmarks.
Baselines are evaluated on Mapillary dataset with pre-trained weights. The fine-tuned network results
is named as DreamNet, with heads/5+ layers corresponding to two experiments. For each network,
we assess multiple MT and number of classes. The results is organized in Table 3.

class | MT | AP AP5, AP

Facebook 80 - 357 58.0 37.8
Matterport 80 - 351 594 36.5
Baseline 11 296 47.1 36.2

DreamNet-heads 11 322|373 579 45.8
DreamNet-5+ 11 322 | 36.8 58.1 45.2
DreamNet-heads 11 642 | 496 724 61.2
Baseline 37 - 5.6 12.1 6.3
DreamNet-heads 37 322 | 15.1 254 18.5
DreamNet-5+ 37 322 | 160 26.6 19.9

Table 3: Evaluation results of Facebook, Matterport, and DreamNet

4

Figure 3: Sample instance segmentation results in 38 classes

Our results show that the 11-class model achieves comparable AP 5y and AP performances as
benchmarks, and yields a superior AP.75 of 45%. Specifically, the AP 5o reaches 72.4% on roadside
images. The improvement in AP 75 proves that the 11-class model performs better in pixel-level
classification with large IoU, i.e. when predicted bounding box significantly overlaps with ground
truth bounding box.

The results for 37-class model are not as promising as the 11-class one, failing to match neither
benchmark by a wide margin in AP, AP 5y or AP 75. Nevertheless, it shows an great improvement
compared with its baseline, with 200% increase in AP and AP 75. Since the 26 newly added classes
have not been seen by the pre-trained network, 8-epoch training duration may not be enough to learn
the features of the object. We believe longer training steps would lead to comparable results as the
11-class model.

4.2 Discussion

Scaling down images from 3000 by 4000 to 1024 by 1024 means many details in the instance labels
are lost. It may result in failures of recognizing small objects, where each pixel may be crucial on
detecting tasks. To fully utilize the Mapillary dataset, we suggest that the input dimension be set to
the original level.

We have make an assumption that all objects smaller than 322 (relative the the original image) can
be safely ignored. This may be true for vehicles far away in a safety distance, but a red traffic light
of 322 size may be important enough for decision making in self-driving. Ideally, we recommend
varying mask threshold for different classes. For example, once the model decides that the object can
be safely ignored, it can skip the segmentation step and allocate resources to other objects required
for finer-grained understanding.

Our low AP scores in 37-class model suggests that in order for the model to learn the 26 new
classes, more training data with targeted objects are necessary. Interpolated linearly from the AP
improvement and our dataset size, we suggest that at least 35,000 images be acquired to train the 26
new classes.

5 Conclusion

In the project, we fine-tuned a pre-trained Mask R-CNN network on Mapillary dataset that focuses
on traffic environment. The backbone we use in this model is ResNet-101 and FPN. Results show
that a 11-class model surpasses benchmarks in terms of AP 75, and achieves comparable result in
AP 50 and AP as the benchmark. On the other hand, we see a huge improvement on precisions of
the 37-class model, but it still far from practical usage. We attribute this under-performance to the
insufficient quantity of data, and suggest further training on larger dataset.

