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Abstract

Our research works toward a robust data pipeline for crowdsourced and decentral-
ized high-dimensional data that is capable of filtering out irrelevant entries. We
use deep convolutional networks to process image data, and apply a number of
probabilistic modeling and dimensionality reduction techniques on artificially con-
taminated image datasets to identify anomalies. Using deep learning approaches,
we were able to learn the conceptual boundaries between distributions relatively
easily in combination with basic statistical methods. Our research suggests an
algorithm for the sanitization of image data for applications like Google Maps or
Yelp, as well as possible applications to detecting erroneous data in large training
sets.

1 Introduction

A large number of applications today rely on crowdsourced image data to illustrate a topic. Google
Maps, for instance, crowdsources photos from different locations in order to display them in their
app. Yelp also relies on user-submitted image data to illustrate the interiors of websites. This
user-submitted data is often contaminated by unrelated images that need to be manually removed.
However, it is difficult and time-consuming to discriminate between valid and invalid user-submitted
images, especially without prior knowledge of what the location looks like. The goal is to develop
unsupervised end-to-end pipeline that, given no knowledge of what the dataset is about, maximizes for
sensitivity (proportion of anomalous images labeled as anomalous) and secondarily recall (proportion
of target images labeled as target images) in anomaly detection.

We characterize a convolutional neural net’s training process as the learning of a latent feature
space W (R™*"*k) (induced by the activations of the penultimate layer ¥(x)) in which the training
categories are linearly separable. This property of the space generalizes fairly well to other categories—
as demonstrated by the effectiveness of transfer learning methods.

As a result, we believe that using pre-trained vectors provides a good heuristic for unsupervised
classification models, as we redirect learning to this latent space on which we can apply simple
statistical methods.

1.1 Probabilistic Model
This motivates us to model our dataset as a probabilistic mixture model: say that the latent representa-

tion is drawn from one of two Gaussian distributions in the latent space, the theme distribution and
the anomaly distribution. In our mixture model, the distribution is sampled according to a binary
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variable z ~ Bernoulli(¢); the distribution is sampled from z, the sample is sampled from either the
theme distribution or the anomaly distribution:

()Y N(ua,Ea) ifz=0
T(z™) {N(ut,Et) ifz=1

This applies to N (u¢, 2¢) or N(pa, Xa)-

We know three facts about these distributions:

1. |X,|, the generalized variance of the anomaly distribution, is almost certainly greater than
|33;|, the generalized variance of the “relevant” distribution.

2. If we can take a uniformly random selection of images in the dataset and “verify” a number
of them as relevant, we can treat these as samples from N (i, Y;) and establish normal and
X2 priors on j; and X; respectively.

3. We have a reasonably accurate estimate of ¢, or the “cleanliness” of the overall dataset,
which is significantly larger than 0.5.

We probe three questions in this paper:

o Are distributions of images in the latent space actually simple enough to be modeled with
these assumptions?

o Are these priors, especially (3), sufficient to identify the correct clusters?

e How can we approach this estimation in a computationally feasible way?

2 Prior Work

Prior work in this area has focused on two primary directions: 1.) clustering algorithms for segmen-
tation of high-dimensional data [12] [11] and 2.) unsupervised image processing techniques (ex.
unsupervised image segmentation) [6]. In this paper, we combine work in the deep learning space
from the latter category and use unsupervised methods from the former to develop an approach to
unsupervised bi-modal Guassian image clustering on high-dimensional image data.

In the past decades, a large family of clustering methods have been proposed to partition data points
into clusters based on similarity measurements, while ensuring maximal dissimilarity among classes.
Many of these clustering techniques have been successfully used for image clustering in applications
such as content based image retrieval (CBIR), image indexing, and image annotation [2].

However, many of these approaches rely on classical statistical techniques that operate on lower-order
optimization parameters. For example, graph based manifold learning methods have shown promising
performance in extracting features for image clustering [12], along with discrete and continuous
image models using information-theoretic-based criteria for unsupervised hierarchical image-set
clustering [5]. These continuous image models are based on a mixture of Gaussian densities, while
the unsupervised clustering model is based on a generalized version of the information bottleneck
principle. In both cases, images are clustered such that the mutual information between the clusters
and the image content is maximally retained.

In the case of bi-Gaussian anomaly predictions, we are concerned primarily with preservation of
image content vs. retention of similarity magnitude between images. Furthermore, we want a model
that is fully unsupervised and computational efficient that performs well on small datasets. As a
result, pre-trained deep learning networks seem promising for providing vectorization of image input
for distribution-sensitive dimensionality reduction techniques. Instead of modeling a direct statistical
manifold to the dataset, we develop a deep learning pipeline that vectorizes using pre-trained image
models nad performs dimensionality reduction, before performing continuous Gaussian clustering as
in some prior work.

This allows us to analyze data in a significantly reduced vector space that takes into account dis-
tribution densities while also rapidly identifying key image features that relate to content (due to
pre-training). The model of choice is based on Inception v4, introduced in 2016 by Szegedy et al.
[10], for the classification of data from the ImageNet challenge [9]. A number of applications have



shown that using an Inception v4 model pretrained on ImageNet produces latent space representations
in the final layers of the network that are good vectorizations for a variety of image applications
[4][3]. As such, we choose to use the Inception v4 architecture as the image vectorization basis of
our methods.

3 Dataset and Features

We create mixtures of target and anomaly data using the Food-101 dataset and ImageNet. More
specifically, we produce three data categories:

e The theme-pie dataset, consisting of a large number of pictures of apple pie;
e The theme-sushi dataset, consisting of pictures of sushi

e The anomaly dataset, consisting of a completely random selection of 900 images scraped
from ImageNet.

We experiment on three mixtures, which mix the above categories. Two mixtures have a target
(sushi / pie) mixed with random noise from ImageNet and one has a target (pie) and clustered
random noise (sushi). Each dataset image’s values are pre-normalized to [0, 1], and resized such
that the largest square central crop is 299 x 299 with bicubic interpolation. Some images were not
RGB-encoded, so we replaced them. We then evaluated ¢ on each of these 3000 images to generate a
set of 98304-dimensional vectors in three different CSV files.

The mixtures were then created at the following proportions:

Target | Anomaly | # Targets | # Anomalies
Mixture 1 Pie ImageNet 1000 333
Mixture 2 || Sushi | ImageNet 1000 333
Mixture 3 Pie Sushi 1000 333

Figure 1: Simulation mixtures from ImageNet & Food-101

To simulate the three scenarios, we wrote a script that shuffled each of the three lists and randomly
selected images up to a threshold. In each scenario, we simulated a relatively high amount of noise
(¢ = .75) by mixing the datasets in unequal proportions.

4 Methods

For our map, we used a TensorFlow[1] implementation of the Inception-v4 architecture. The network
weights were trained on the ImageNet ILSVRC 2012 dataset, and the last layer was removed so
that the network represented the map W : R299%299x3 __, R16x16x384 (A the model uses ReLU
activation, the latent space contains only nonnegative components.)

Because of the memory issues involved in mixture modeling in R983%4, we experimented with four
data-sensitive dimensionality reduction methods, moving from the least computationally expensive to
the most: sparse random projections, principal component analysis, sparse PCA, and autoencoders.
Our pipeline applied each method to each of the three simulation.

Sparse random projections: The first dimensionality reduction method we tried. SRPs are a com-
putationally efficient way to perform dimensionality reduction by generating a sparse, nearly-
orthogonal matrix and projecting the data with it. We generate this matrix according to the
parameters recommended in Li et al. [7], and reduce the vectors to 5000 low-information
vectors.

Principal component analysis: A standard dimensionality reduction technique, significantly more
computationally intensive than sparse random projection. Iteratively generates an orthogonal
matrix of height < d by choosing orthogonal unit projection vectors that maximize the
variance. Early versions of the pipeline used an approximate PCA algorithm that sampled
smaller parts of the dataset; with increases in computing power, we were eventually able to
generate around 500 principal components.



Vector Embedding Size
Sparse Random Projection 5000
PCA 500
Sparse PCA 500
Auto-encoder 100

Figure 2: Dimensionality reduction sizes for clustering techniques

Sparse PCA: A more recent technique pioneered by Zou et al. [13] that applies PCA with the
variance objective regularized by the elastic net (a linear combination of L;/LASSO and L,
penalties). Popular for dimensionality reduction because of L; regularization’s sparsity; this
increases the semantic closeness of the data to the original input. Takes much longer than
PCA; minibatch approximations necessary.

Autoencoders: After promising results from the 500-dimensional representations, we wanted to
push the compression even further by training an autoencoder network. An autoencoder
takes a latent vector as input, forces it through several lower-dimensional layers, and expects
the original latent vector as output. By doing so, the bottleneck layer becomes a compact
representation of the data. (It’s worth noting that there’s only a minor difference between
PCA and a one-layer autoencoder network, and PCA is already “most of the way” to an
autoencoder in a certain sense.) Autoencoders would also enable us to generalize to more
complex classification boundaries. The training ultimately took longer than expected.

It is important that each method (besides sparse random projections) is run on the mixed scenario
files, rather than the individual datasets; this is because these methods are heavily dataset-dependent.

For each file, we sampled a proportional number of each class of vectors into 100-vector test sets,
then trained a Gaussian mixture model from the scikit-learn library[8] on the remaining vectors,
emulating our prior for the theme/target mean by initializing the means to sample means of 20
randomly sampled target images and the weights to the known ¢. The data labels were unknown to
the algorithm. Our pipeline ran this code with different numbers of projected components and output
the resulting sensitivity and recall statistics to a text file.

5 Experiments/Results/Discussion

Technique Sensitivity | Recall

Sparse Random Projection 99.7% 66.4%
PCA 99.7% 85.0%

Sparse PCA 82.1% 62.4%

Figure 3: Performance metrics for dimensionality reduction techniques, averaged over scenarios

As our experiments progressed, we tried dimensionality reduction techniques in increasing order of
computational intensity and decreasing order of the resulting dimension. Sparse random projections
were able to capture a lot of the variance within the latent space, but only using a very high-
dimensional representation. Sparse PCA, which we hypothesized would be useful because of the
sparsity and semantic importance of ReLU data, actually performed unilaterally worse than the other
models. Regular PCA outperformed sparse random projections significantly on recall and achieved
comparable sensitivity.

Note that these figures only represent effectiveness if we use 50% as our threshold of prediction. By
only accepting examples with a target probability of, say, 70%, we could increase the sensitivity
with corresponding cost to recall. This might make sense in terms of user-facing applications like
Google Maps, but could also harm the amount and the distribution of experimental training data in
data science contexts.

Our explanation for the high performance of the PCA algorithm was that it accomplished two things:
from an ANOVA standpoint, it isolated axes that maximized the variance within the largest dataset,
and also maximized the variance between the clusters.



theme-pie v. anomaly theme-pie v. anomaly

SPCA2

-0.20 -0.15 -0.10 -0.05 0.00 0.05
SPCAL

theme-pie v. anomaly

120.00%

100.00%

B000%

SRP2

c000% u Sensithity

# Recall

an00%

2000

000

Figure 4: Classification plots of one scenario over the first two projection vectors. Shape represents
data source; color represents estimated cluster.

6 Conclusion/Future Work

Our promising results demonstrate the feasibility of an automated anomaly detection system, but
more work needs to be done to replicate our results on other datasets and on other dimensionality
reduction techniques.

With more time, we would implement the EM algorithm for the full distribution with the sampling
priors detailed in Section 1.1 and finish the autoencoder representation learner. We strongly suspect
that the right combination of dimensionality reduction and Bayesian Gaussian mixture modeling
would be able to yield a robust algorithm for separating distributions in the latent space with linear
(or even non-linear, in the autoencoder case) classification boundaries.

7 Contributions

Both team members contributed equally to all parts of the project ideation, development, and final
presentation including: creating initial datasets, training networks, building data pipelines, testing on
various methods, as well as mathematical formulation of the problem statement. Contribution to the
final poster and this paper was also shared evenly and done together.
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