Diagnosing Chest X-ray Diseases with Deep Learning
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Abstract

With the development of using deep learning techniques, automatic diagnosis of
chest X-rays pictures can help thousands of patients to get a quick and accurate
clinical assessment, especially for some places in lack of experienced doctors.
In this project, we build three deep learning models (DenseNet-121, DenseNet-
LSTM and DenseNet-GRU) to predict 14 thoracic diseases given a chest X-ray
picture as the input. A modified loss function that better imitates the diagnostic
process are used. The new loss function used on DenseNet-RNN models performs
better than the simple multi-label cross-entropy loss. Both DenseNet-LSTM and
DenseNet-GRU models help to increase the ROC-AUC scores of certain diseases.
In particular, GRU as a decoder in DenseNet-RNN models performs better than
LSTM in both loss functions.

1 Introduction

Detecting thoracic diseases in chest X-rays remains a challenging task that relies on the availability
of expert radiologists. The diagnosis becomes even more complex when the patients develop
complications (such as effusion and infiltration) or other pre-existing diseases. These situations are
more common in young children, the elderly and those with pre-existing illnesses, such as diabetes

[S].

Recently many exciting researches exhibit the ability of deep learning algorithms in helping diagnose
the diseases, given a large number of high quality X-ray pictures. With the development of deep
learning techniques, automated detection of diseases from chest X-rays would not only benefit clinical
diagnosis, and also be invaluable in delivering health care to populations in lack of access to expert
radiologists.

Inspired by the previous successes of CheXNet in pneumonia detection [6], we extend it to a CNN-
RNN framework that inputs a chest X-ray image and outputs the diagnostic multi-labeling of all 14
different diseases. This idea is originated from a more generic framework for Multi-label Image
Classification [8] that has been applied to web image database such as NUS-WIDE and Microsoft-
COCO. Following this framework, we use the CNN as an encoder to process X-ray images and RNN
as a decoder to detect all 14 diseases. Different from the previous research, our model takes the
DenseNet-121 as the encoder which is connected by LSTM or GRU as the decoder.

2 Related work

A lot of investigations in automated diagnosis using deep learning techniques have been done in
recent years. [9] released the ChestX-ray14 dataset which contains 112,120 frontal-view chest X-ray
images individually labeled with up to 14 different thoracic diseases, and benchmarked different
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CNN architectures that are pre-trained on ImageNet. Using this dataset, [10] exploited statistical
dependencies between labels in order make more accurate predictions. However, the ROC-AUC scores
of RNN model are lower than the pure CNN model given in [6], which applied the model DenseNet-
121 to the ChestX-ray14 dataset to detect pneumonia using binary classification and transform it into
14 single-label classifications. The prediction exceeds average radiologist performance on the F1
metric. Similarly, [7] applied CNN-RNN models to Openl, another open-source X-ray image dataset.

3 Dataset and Features

Our data set is from [9],there are 112,120 frontal-view chest X-ray PNG images in 1024 by 1024
resolution 1. We split our data set into 70% training set, 20% for dev set and 10% for the test set. We
use the random flip to conduct data augmentation. We also transform our gray-scale image into 224
* 224 resolution images and replicate the resolution by 3 to get a RGB image as 224 by 224 by 3.
This is the input data for our CNN model, denseNet121. We also read the meta information data for
each image and generate a vector of dimension 14 to represent the exist of 14 disease as the training
ground truth.

Figure 1: chest X-ray

4 Methods

Our base model is DenseNet-121, as devised by [3]. The main part of the model consists of 4 dense
blocks. In each dense block, each layer [ takes all the output features from every previous layer
1,...,1 — 1 as its input. This is called dense connection. The usage of dense connections encourages
the reuse of features in the model. Also, due to shorter connections, layers can receive excessive
supervision from the loss function. Similar to ResNet [2], DenseNet can also prevent the problem of
gradient vanishing because of the addition of the shortcuts among layers. At the end of DenseNet-121,
we add a fully-connected linear layer with output size 14 and a Sigmoid activation for each output.

To extend the base model, we treat DenseNet-121 as the feature encoder and add a bi-directional
two-layer RNN model as a decoder to further exploit the correlations among the 14 diseases. We tried
both Long-Short-Term-Memory (LSTM) and Gated Recurrent Units (GRU) as the RNN. The output
size of the encoder is 50, and that of the decoder is 14. Different from [10] where a one-directional
RNN is used, the bi-directional RNN decoder should capture the information of other diseases more
accurately and completely.

Two loss functions are used separately throughout all three models:
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Li(X,y) = > (—yilogp(Y; = 1|X) — (1 — ) log p(Y; = 0| X))
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Ly(X,y) —yoz (—yilogp(Y; = 1|1X) — (1 — y;) log p(Yi = 0| X))

(—yo logp(Yo = 1|X) — (1 — o) log p(Yo = 0| X))
L1 is a simple multi-class cross-entropy loss function. Y; is defined as:
0 if the i-th disease is not found
Y, = :
1 otherwise

fori =1,...,14, and y; is the corresponding model prediction. L, is a modified version of L; where
Y) is defined as:

1 otherwise
and yj is the corresponding model prediction. With the label Yj, we expect the model to first reflect
whether the figure has any disease or not. If there exist diseases, the model will further predict y;.
Otherwise, the loss function will not take Y; into account. The reason of coming up with Ly is
because we want to make the model imitate the actual diagnostic process of radiologist in a better
way. In the view of radiologist, if he or she decides that the given X-ray photo does not have any
disease, the diagnosis simply comes to an end, just like the behavior of L.

v {O if no finding from the input figure
0 =

We used the framework PyTorch to implement all the models.

5 Experiments/Results/Discussion

In this section, we analyze the results of the three models: DenseNet-121, DenseNet-LSTM and
DenseNet-GRU, as discussed above. We use two loss functions, L1 and Lo for each model.

To tune the learning rate, we tested 1072, 5 x 1074, 1074, 5 x 10~?, 10~° and report the one giving
the best dev loss and ROC-AUC value after 20 epochs. The batch size are all 32 to fit the GPU
capacity. The weight decay is tuned by running on a subset of the total dataset for each case and
5 x 10~° appears to give the best AUC-ROC value in all cases. We use Adam optimizer [4] for all
the cases.

The first model is the pre-trained Densenet-121. The learning rate to achieve the best average ROC-
AUC is 5 x 107°. It can be seen from Figure 2 that the training loss decreases almost exponentially
with respect to epoch numbers. Also, the blue curve in Figure 2 shows that the AUC-ROC score
increases as Epoch number increases. As seen in Table 1 column “L;”, the ROC-AUC score for each
disease is close to the results in ([6]).
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Figure 2: DenseNet-121 with L; (X, y)



Table 1: DenseNet-121

Pathology Rajpurkaretal I, Lo

Atelectasis 0.809 0.811 0.781
Cardiomegaly 0.925 0.882 0.872
Effusion 0.863 0.884 0.868
Infiltration 0.734 0.714 0.647
Mass 0.867 0.846 0.836
Nodule 0.780 0.770 0.748
Pneumonia 0.768 0.745 0.727
Pneumothorax 0.888 0.889 0.873
Consolidation 0.790 0.802 0.792
Edema 0.887 0.899 0.895
Emphysema 0.937 0915 0912
Fibrosis 0.804 0.812 0.776
Pleural Thickening 0.806 0.807 0.792
Hernia 0.916 0.831 0.874
Average 0.841 0.829 0.814

Table 2: DenseNet-RNN

Pathology Yaoetal. LSTM-2 GRU-2 LSTM-1 GRU-1
Atelectasis 0.772 0.768 0.770 0.769 0.776
Cardiomegaly 0.904 0.797 0.854 0.700 0.806
Effusion 0.859 0.863 0.877 0.857 0.860
Infiltration 0.695 0.557 0.617 0.552 0.691
Mass 0.792 0.816 0.816 0.633 0.878
Nodule 0.717 0.698 0.699 0.782 0.826
Pneumonia 0.713 0.640 0.667 0.717 0.751
Pneumothorax 0.841 0.849 0.844 0.689 0.727
Consolidation 0.788 0.777 0.785 0.796 0.860
Edema 0.882 0.861 0.878 0.730 0.780
Emphysema 0.829 0.878 0.882 0.700 0.840
Fibrosis 0.767 0.625 0.731 0.778 0.892
Pleural Thickening 0.765 0.693 0.741 0.699 0.763
Hernia 0914 0.754 0.78 0.728 0.770
Average 0.798 0.760 0.782 0.723 0.801

Then we switch the loss function to L. The result is pretty good in comparison, though the average
ROC-AUC is a bit lower. This is partly because we have no further information from the patients,
such as their body temperatures and disease histories. We believe this loss function can work better
when more information about patients is known.

Table 2 shows the results of DenseNet-LSTM and DenseNet-GRU. The learning rate is 10~%. Both
loss functions defined above are used. It can be observed that GRU performs better than LSTM
in general. This is expected because there are less parameters in GRU which is less prone to the
over-fitting. The results below are compared against [10]. Using Lo works well in both cases, while
GRU with L; gives a slightly better result. As discussed above, more information can help improve
the performance of using L.

It can also be seen that bidirectional RNN models are able to capture the correlation between two
diseases and help increase the AUC-ROC value. For example, of the four bold diseases in Table 2,
the results of Mass and Emphysema have an obvious increase. In reality, lung Mass is often observed
in patients who have Emphysema ([1]).



Additionally, ResNet-18 is also used as an alternative of DenseNet-121 under the encoder-decoder
framework. We use ResNet-18 which has less parameters because the chest x-ray images are in
gray-scale with a much simpler configuration. Our results show that the two models perform similarly,
though Densenet gives a sightly higher ROC-AUC. The training time, however, can reduce by a factor
of 3 when using Resnet18.

6 Conclusion/Future Work

In this project, we build three deep learning models: DenseNet-121, DenseNet-LSTM and DenseNet-
GRU to predict 14 different diseases of a chest x-ray figure. Two loss functions, the simple multi-label
cross-entropy and the other that better imitates the diagnostic process are used. The main conclusion
is the following:

1. Using DenseNet-121, we get similar ROC-AUC results as [6].

2. The modified loss function Ly examines the existence of disease before the disease classifi-
cation, which better imitates the diagnostic process. In our DenseNet-RNN models, using
Ly does perform better than L;. We expect it to perform even better when more information
from patients like gender, age, body temperature, etc, are known.

3. Using bi-directional RNN helps to increase the ROC-AUC scores of Mass and Emphysema
which have certain correlation that can be captured by sequence models.

4. In encoder-decoder framework, GRU as a decoder performs better than LSTM in both loss
functions. GRU contains less parameters thus it is less prone to the over-fitting.

In the future, we will focus on extending the current RNN decoder to a more sophisticated attention
model (that is add an one-directional RNN on top of the current bi-directional layers), so as to better
capture the correlations among the diseases.

7 Contributions

All three members share the same amount of work. We all work in developing the code, iterating the
models and writing reports. The codes can be found in this repo:

https://github.com/ZixiXu/CS230_CheXNet.
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