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Abstract

Parsing and identifying protein architectures takes an experienced eye and knowledge of many different folds.
Because of this, many well-established protein classification laboratories still use manual evaluation to annotate
structural features in proteins. Towards the automation of this process, | present a fully convolutional neural
network that performs residue-wise semantic segmentation of multi-domain protein chains, given a pairwise
distance matrix or “contact map” as an input. The model classifies each residue into 38 architecture classes and
performs with 90.3% position-wise accuracy, 95.2% average within-class accuracy, and 87.0% average within-
structure accuracy.

1. Introduction

Proteins are biomolecules that regulate nearly all chemical processes in living organisms. Structurally, proteins
are a linked sequence of amino acids (“residues”), of which there are 20 different types. It is known that a given
string of amino acids will fold into a unique 3-D structure with distinct biochemical functions. Most proteins are
comprised of multiple domains (Fig. 1), which are structural units that can be assigned to different architecture
classes.
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Figure 2. Protein Contact Maps
Figure 1. Example of a Multi-Domain Protein Two examples of single-domain proteins colored as chainbows (left), with
A cartoon-style rendering of PDB 3gqyA (right) and corresponding contact a-carbons shown as spheres. Red indicates the beginning, and blue
map (left). The protein is single-chain and comprised of three domains, indicates the end of the chain. The corresponding contact maps are
each with a different architecture: 8-barrel (blue), aB-barrel (white), 3- shown to the right of each protein with units in A. Axes correspond to
layer-aBa-sandwich (green). amino acid index.

When studying protein structure it is often difficult to parse and identify domain architectures without an
experienced eye and knowledge of many different folds. As a result, manual evaluation is still widely used to
annotate structural features.

Previously, | reported a single-domain classifier which returns an architecture class label given the contact map
of an isolated protein domain. A contact map is a pairwise distance matrix between all amino acids in the protein
(a-carbon positions), and is thus a rotationally and translationally invariant representation of a 3-D protein
structure in 2-D (Fig. 2). Since my previous report, further training allowed this initial model to achieve a new
test accuracy of 84%, and an average within-class accuracy of 87%. Further details of this preliminary model are
summarized in my mid-quarter milestone and are excluded here. The new model described below extends the
upon the previous architecture but performs the tasks of domain segmentation and classification in one pass.
The input of the model is the contact map of a full multi-domain protein chain, and the output is a vector of class
predictions for each amino acid.



2. Dataset
All data used in this study was obtained from the CATH protein database. A list of unique protein chains was
kindly provided by lan Sillitoe who works with the CATH group at University College London.

2.1. Data Selection

The current CATH database (v4.2) is comprised of 132380 non-redundant fully annotated protein chains (42
classes, 202506 domains, 3.3x107 residues). From this set, chains shorter than 520 residues that did not contain
domains belonging to classes with fewer than 10 members were selected for use. Structures larger than 512
were center-cropped, and smaller structures were zero-padded to 512. The resulting dataset contains 126069
chains (38 classes, 181753 domains, 2.9x107 residues) spanning 95% of all non-redundant chain data. Selection
did not drastically alter the overall structure of the data (Fig. 3).
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Figure 3. Distribution of Data before and after Selection.

Top: Distributions of non-redundant protein chains in the CATH database. Bottom: Distributions of the selected dataset. The left-most
column shows the distribution of chain lengths, the middle the number of domains per chain, and the right the number of residues per
architecture. The selection process does not greatly alter the structure of the data.

2.2. Data Splitting

Of the selected chains, 8000 were reserved for each the test and development sets and the remaining 110069
were used in training. It should be noted that the dataset is very imbalanced with the largest class containing
nearly 7 million residues and the smallest containing less than 3500. To address this, the split was performed in a
stratified manner, but stochastically adjusted so that all sets had at least 650 residues from each class present
(Fig. 4). During training, examples were weighted to ensure that each class had equal influence.
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Figure 4. Distribution of the Split Data.
From left to right, each column shows the distribution of chain lengths, the number of domains per chain, and the number of residues per
architecture. The split was performed in a stratified manner so that each class is represented by at least 650 residues in each set.



3. Model

3.1. Architecture

The architecture of the model is shown in Figure 5. The model is comprised of six convolutional layers
(encoding), followed by a “pixel shuffle” step for upsampling to a 512x512 feature map (decoding). Rectangular
convolutions are then used to reshape the map into a 1x512@38 tensor that is passed to a softmax function.
Each convolutional layer in the encoding phase is followed by a BatchNorm and a LeakyRelLu. The 4x1
convolution is followed only by a LeakyReLu, and the final layer passes directly into a softmax function.
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Figure 5. Model Architecture

The model is comprised of six downsampling convolutional layers (encoding), followed by a “pixel shuffle” step for upsampling to a 512x512
map (decoding). Rectangular convolutions are used to reshape the feature map into a 1x512@38 tensor that is passed into a softmax
function.

3.2. Training
Training was performed for a total of 90 epochs with a mini-batch size of 64 using the Adam optimization

algorithm. A learning rate of 0.001 was used for the first 55 epochs, 0.0001 for the next 15 epochs, and 0.00001
for the final 20 epochs. The loss function, shown below, is a cross entropy loss averaged across every residue in
the input chain. Importantly, the loss was weighted (w¢) so that training examples from under-represented
classes had increased influence on training. Weights were chosen so that each class, in total, had equal
influence.
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Figure 6. Error Rates During Training
After 90 epochs of training, the model achieves a peak accuracy of
90% and an average within-class accuracy of 95% on the
development set. (Note: the plot shows slightly higher error due to a
mistake in forgetting to turn off dropout when computing error
0 20 42 . 60 80 during training.
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Dropout regularization was used throughout the convolutional layers in the encoding phase with a zeroing-
probability of 0.1. All weights were initialized using Xavier Initialization. The model reaches an accuracy of 90%
and a within-class accuracy of 95% on both the training and development sets. Model inputs were scaled by -100
and not normalized.



Class Accuracy

3.3. Performance

The trained model generalizes to the test set and performs with a position-wise accuracy of 90.3%, an average
within-class error of 95.2%, and an average within-structure accuracy of 87.0%. Because the data are highly
imbalanced and the class distributions of each of the three datasets are very similar, one concern is that the
model may simply be overfitting to highly represented classes. The plot below (Fig. 6) suggests otherwise, as
there is no significant correlation between the frequency of a class in the training set and class accuracy. The
majority of class accuracies are above 90% even for the rarest classes.
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Figure 6. Class Accuracy vs Training Counts

Each point represents a single class. No obvious correlation
between the number of examples in the training set and class
accuracy on the test set is observed.

Figure 7. Error Rates

The error rates for each classes. The confusion matrix is shown as
an insert and indexed by architecture number. Green indicates a
higher count. The matrix is clipped for visibility.

3.4. Output Analysis

Example outputs are shown on the following page in Figure 8. Overall the model performs well, and is able to
effectively segment multi-domain structures. In many of the test cases, there are minor deviations in boundary
positions. However, the majority of these do not appear to hinder the coherence of the predictions. Importantly,
it appears that the model is able to recognize delocalized features in the 2-D contact map that correspond to
localized domains in the 3-D protein structure:

(1) The model is able to recognize domains with discontinuous residue ordering.
This is demonstrated in the case of the central alpha-beta barrel in 3gqyA, where the residues comprising the
barrel are distant in sequence. This is apparent also in the case of the two tre-foil domains of 4ileA — each
domain has significantly different residue-ordering, and yet the model is able to properly identify both.

(2) The model is able to recognize differences in secondary structure organization.
Both the orthogonal-bundle in 3sahB and the alpha-horseshoe in 4ileA are purely alpha-helical in content,
and both are comprised of residues in continuous sequence. Despite these similarities, the model is able to
distinguish between the secondary-structure organizational differences in these architectures.

4. Remarks and Future Directions.

| plan to implement my model as a plugin for the popular structure-viewing application PyMOL. As a protein
researcher myself, such a tool would greatly aid my everyday viewing of protein structures and, | believe would
also serve as a useful educational device for students of structural biology. The overall success of this model may
also suggest that contact maps are a powerful, compact representation of 3-D protein structures, and should be
explored further.
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Figure 8. Segmented Examples and Contact Maps.

Segmented examples taken from the test set. From the left: (1) the correctly segmented structure, (2) the model prediction, (3) protein chain colored in
residue order (rainbow order), (4) contact map in A. dileA: 99.2% position-wise accuracy. 3 domains: alpha-horseshoe (green). trefoil (cyan). 3gayA: 86.9%
position-wise accuracy. 3 domains: beta-barrel (green), alpha-beta barrel (cyan), loop (dark blue), 3-layer-aBa(magenta). 3sahB: 89.0% position-wise
accuracy. 3 domains: orthogonal-bundle (green), 2-layer sandwich (cyan), loop (magenta).
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