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Abstract

To calibrate physics-based yarn-level cloth relaxation, I built a deep neural network
to predict physical simulation parameters from a relaxed yarn configuration. Each
input is a yarn configuration: a set of ordered spline control points that defines
yarn curves. Each output is a physical parameter that affects the bending energy of
the yarns. The network predicts the correct physical parameter within +0.1 with
93.6% accuracy on the test set.

1 Introduction

Yarn-level cloth relaxation is the process of taking a synthetically generated yarn topology and running
physics-based simulations to generate a feasible or physically plausible configuration. Primarily used
in computer graphics, this technique maps an initial configuration and a set of physical parameters to
a physically plausible yarn configuration. Figure 1 shows a simple knit-loop structure before and
after relaxation.

Figure 1: Comparison of yarn state before and after relaxation.

(a) Before Relaxation (b) After Relaxation

When attempting to calibrate relaxation models, one must use measurements of actual knitted or
woven fabrics. However, measured yarn data can be viewed as in a "relaxed" state, which hides much
of the critical physical parameters that were required to get the yarn into its relaxed state.

This calibration process is difficult. The many parameters of relaxation, and the many permutations of
possible initial conditions make learning this space immensely difficult. Thankfully, because clothing
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has repeatable patterns and shapes, we can learn on very small fixed-size problems and generalize
this information to other parts of the model.

In this work, I train a neural network to learn the inverse of yarn-level cloth relaxation on a very
small problem, going from output yarn data to a physical parameter that affects the yarns bending
energy. Using the relaxation engine as a black box, I invert it’s input and output data to learn the
inverse mapping, which will help when I calibrate my relaxer against measured data. This work will
help to calibrate relaxation methods to real clothing, enabling more realistic textures for 3D graphics
in films and movies.

2 Related work

The simulator used in this work is directly taken from [KIMOS8], which defined yarn-level cloth
relaxation. The work [KIM10] improved efficiency of the simulator and tweaked the yarn model.

This work is unique due to the novelty of applying deep learning to yarn-level cloth relaxation. That
said, the idea to learn parameters from measured data is not new. There are works that exist to infer
physical parameters or interactions from video data. [MTM] successfully analyze video data to
reconstruct collisions between different objects. Using deep learning to collect physical parameters
from measured data is an important step in connecting real objects to our physical models and virtual
reality.

3 Dataset

Without access to measured data for this work, I opt to generate data using a simulator to train and
test the network. I am using a research simulator to generate cloth simulation data to feed into the
network. Under this, my dataset size is constrained by compute time and the time to set up more
examples.

Because traditional neural networks are trained on fixed-sized inputs, I pick a single topological
pattern with a fixed number of degrees of freedom and permute it’s bending parameter to generate a
sufficiently large data set for training. In general, permutations could include translation, rotation,
random position permutations that do not change yarn topology, scaling multiple physical constants
such as bending and stiffness parameters, scaling rest-length parameters, and scaling control point
masses. To keep the scale of this work feasible, I only sweep the bending parameter to generate
examples.

The dataset is separated into inputs and outputs:

1. The input dataset consists of real-numbered values for each x,y,z position of each control
point in the "relaxed" state.

2. The output dataset consists of the physical bending parameter used to run the model. We
sweep this bending parameter to collect a large enough sample size.

The dataset is made up of 10,000 examples. The inputs are made up of the relaxed state of the model,
with 63 real number values corresponding to the xyz of each of the 21 points of the 3 yarn system as
seen in in Figure 1. The output is a single real-number value corresponding to a physical parameter
that scales the bending energy of each yarn. To ensure a fast learning time, I normalized the inputs to
have zero-mean and unit variance. I split the data into 90%/10% train/dev sets.

4 Method

I used a traditional fully-connected neural network. The network used 2 hidden layers and a linear/no-
activation output layer. Both hidden layers used the RELU activation function. Both hidden layers
had the same number of nodes as the dimensions of the network input. Mathematically, each hidden
layer has the form:

Al — URELU(W[”AU—” + b[l])
Where W is the weight parameter matrix, A is the activation of the previous layer, b is the bias
parameter matrix, o gy is the activation function. As my loss function, I used a sum of squared



difference loss function (which is the squared L2 difference norm). Mathematically:
L= -y
The neural network has the following architecture:

1. 63 inputs corresponding to 21 points.

2. 63 node fully-connected hidden layer using RELU
3. 63 node fully-connected hidden layer using RELU
4. 1 node output layer. No activation on the final layer.

5 Experiments/Results/Discussion

I chose to use an Adam Optimizer with the following parameters:

1. Learning Rate: o = 0.005.
2. f1 =09
3. B2 =0.999

I used a mini-batch size of 300 examples. My primary metric for evaluating the performance is the
accuracy of the predictions (M), which is defined as the following:
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m
m’ is the total number of training examples in the evaluated set of examples. is the Depending on
how you select the counting threshold you will get different percentages with this accuracy function.
The raw training error for all training examples can be seen in Figure 2

Macc =

Figure 2: Training Prediction Error
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I selected the threshold to be 0.1 and report an accuracy of 91.75% on the training set. To illustrate
this decision, it is valuable to look at the extremes. If we set the threshold to 1.0, we would report



an accuracy of 100%, which may be misleading which is also uncharacteristic of the overall
performance. On the flip side, if we used a threshold of 0.01, the accuracy becomes 11.6%. The
physical parameter being estimated in the dataset is sampled at intervals of 0.01, so we would expect
the neural network to not be able to reduce its estimate uncertainty close to the sampling frequency.
If the dataset provided samples at 0.001 intervals, we should expect the accuracy of the network to
improve.

Figure 3 contains the raw test error for all test examples. The accuracy metric is also applied to the
test error, and reports an accuracy of 93.6% with a threshold of 0.1.

Figure 3: Test Prediction Error
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The network does marginally better on the test set than the training set overall. I suspect this is
because the network doesn’t have enough layers to capture the "harder" examples in the training set,
and the test set happens to have more "easier" examples.

6 Conclusion/Future Work

Having established this initial network, I have provided a proof of concept for learning physical
parameters from yarn models. For a fixed-sized pattern, and knowledge of the initial condition,
it is possible to learn the mapping from relaxed/simulated yarn data to a physical bending energy
parameter. With more computational time, I could generate more data and use a deeper network
to learn coupled physical parameters from relaxed yarn data. Also, moving from a small model
to a larger model would help argue that this can be achieved on different knitted/woven patterns.
Additionally, estimating the initial state instead of just physical parameters is computationally taxing,
but will enable a more generalizable learning system.



Contributions

I am the only contributor to this work.

Link to Github Repo: https://github.com/jcleaf/cs230

I used Pandas, Tensorflow, Numpy, and scikit-learn to help with data management. I downloaded a
fully-connected neural network implementation from https://github.com/lucko515/fully-connected-nn
using an MIT license to get started, and used some of the data processing code from this project to
parse my data.
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