Neuronal Death in Neural Networks with Group Sparsity Regularization
CS 230 Project, Final Report, Winter 2018

Nicholas Dwork (SUNet ID: 05806332)

1 Code Repository

The code for this project can be found here:

https://github.com/ndwork/sparseNNs.git

2 Introduction

In the brain, neurons that are deemed useless die away through a process called neuronal death [1]. This
process conserves resources (e.g. space and energy consumption) while maintaining functionality. We might
hope that we could include a similar process during the training of neural networks. That is, rather than
retaining all the neurons in the initial structure of the network, we would like to remove neurons that are
unnecessary. This process would also conserve resources (e.g., memory and computational cost required by
the network) by reducing the number of nodes in each layer of the neural network. Additionally, eliminating
neurons would reduce the number of parameters in the network and could prevent over-fitting the parameters
to the training data.

Neuronal death can be achieved during network training by utilizing a regularization function that encourages
group sparsity, where the parameters of each neuron are combined into a group. The Ly, Ly norm is such a
regularization function; when used, a neural network is trained by solving the following optimization problem:

minimize J(w,) —0-)\22”“’31”%7 (1)
g

where J is the cost function, w, are the parameters for the g™ neuron, w is a vector of all the parameters
(equal to the concatenation of all the w, vectors), and x is the training dataset [2, 3].

When J is differentiable, proximal algorithms are popular for solving problems of this type [4]. For example,
problem (1) can be solved using the proximal gradient algorithm. However, this would require knowledge of
the gradient of J in each iteration. As is often the case with neural networks, the size of the training dataset
may be so large that computing the gradient is too computationally expensive to be feasible in every iteration.
Instead, the gradient can be estimated using a mini-batch of data in each iteration of a stochastic proximal
gradient optimization algorithm (SPG) [5]. The iterations of SPG for k € {1,..., K} are

wk+D) — prox, 1, 1., (w(k) — . Vad (w(k)g:d)))

where x4 is the data of the d™ mini-batch, t; is the step size for the k™" iteration, and prox, r. r, is the
proximal operator of the scaled L3, L; norm. By the separable sum rule of proximal operators, prox,, r, 1, is
the sum of the scaled L, proximal operator applied to each group x4. That is, the proximal operator for the
Lz, Ly norm is proxp, 1, (w) = >_, prox,, (wg), where

(A —tx/llwgllz) z if |lwgllz >tk
Prox, 1,(wy) = { 0 ’ other\g/vise

The optimization with the group sparsity regularization determines the sparsity pattern (i.e., it identifies those
neurons whose parameters are all 0). Once the sparsity pattern is determined, the network is “polished”. That
is, the network is pruned of all dead neurons (those with all weights and bias equal to 0) and then retrained
using Stochastic Gradient Descent on the unregularized problem.

3 Test Problem

The results of this project were generated with the CIFAR-10 dataset [6]. It is comprised of 60,000 color
images of size 32 x 32 where each image is labeled as one of ten classes: airplane, automobile, bird, cat, deer,
dog, frog, horse, ship, truck. The training set consists of 50,000 images and the test set consists of 10,000
images.

The neural network used for classification (shown in figure 1) consists of three convolutional layers followed
by three fully connected layers. The convolutional layers are each followed by a soft-plus activation function
(with a smoothing parameter of 100)!; after activation, the convolutional layers are each followed by a 2 x 2
average pooling operation. Note that each of these functions is differentiable, adhering to the requirements
of SPG. The final fully connected layer does not have an activation function applied to it; instead, a softmax
is applied to its output. Cross-entropy is used as the loss metric during training.

Convolutional Layers Fully Connected
] Layers

Ik

\/ \/
Soft Plus and Soft Plus and &. L
Avg Pooling Avg Pooling
Soft Plus and
Avg Pooling

Figure 1: Classification network for CIFAR-10 dataset: three convolutional layers followed by three fully connected
layers.

4 Results

Without any regularization, the network achieves 100% accuracy on the training set and 73% accuracy on
the test set. With a regularization of 100, 356 of the 1310 neurons were removed from the network. The
accuracy, after polishing, is 100% on the training set and 75% on the test set. This shows that group-sparsity
regularization is able to eliminate neurons that are not useful for the classification process.

5 Conclusion and Future Work

This paper presents a method that is able to automatically remove neurons while maintaining functionality for
the test problem described. This reduces the time required for the network to perform classification, makes
it easier to implement with a hardware solution, and reduces the probability of over-fitting. The method will
need to be tested on additional datasets to further validate is utility.

When imposing group sparsity, additional gains in the training time can be made by pruning as the weights
become sparse [7]. That is, those neurons with weights that are 0 can be removed from the network during
the training process. | leave this expansion as future work to be done after this class project’'s completion.

In mammals, thousands of new neurons are created in the hippocampus of an adult human every day through
a process called neurogenesis [8]. Through the process of learning, only those neurons which are deemed
useful are retained; the others experience neuronal death [1]. Continuing the analogy of the introduction, we
might hope to include this new adaptability into the training of neural networks, perhaps in reinforcement
learning algorithms. Again, | leave this expansion as future work.

LThe soft-plus activation function is a smooth approximation to the relu activation function.

6

Acknowledgements

The author would like to thank Surag Nair and Daniel O'Connor for their guidance and many useful insights
throughout this project.

References

(1]
(2]
(3]
(4]
(5]

(6]
(7]
(8]

Lee J Martin. Neuronal cell death in nervous system development, disease, and injury. [International
Journal of molecular medicine, 7(5):455-478, 2001.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in deep
neural networks. In Advances in Neural Information Processing Systems, pages 2074-2082, 2016.

Simone Scardapane, Danilo Comminiello, Amir Hussain, and Aurelio Uncini. Group sparse regularization
for deep neural networks. Neurocomputing, 241:81-89, 2017.

Neal Parikh, Stephen Boyd, et al. Proximal algorithms. Foundations and Trends®) in Optimization,
1(3):127-239, 2014.

Lorenzo Rosasco, Silvia Villa, and Bang Céng Vii. Convergence of stochastic proximal gradient algorithm.
arXiv preprint arXiv:1403.5074, 2014.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images, 2009.
Shijian Tang and Jiang Han. A pruning based method to learn both weights and connections for LSTM.

TJ Shors, ML Anderson, DM Curlik 11, and MS Nokia. Use it or lose it: how neurogenesis keeps the brain
fit for learning. Behavioural brain research, 227(2):450-458, 2012.

