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Abstract

Non-linear deep learning methods may develop new insights for long-standing social science questions. In
this study, I used three class of neural network models to predict students’ choosing of a particular school
in his or her public school application. F1 scores of lower 80% can be achieved using a Siamese-like
network trained on augmented school-student paired data. Attempts to increase recall led to the adoption
of a weighted cost function that increases the penalty for false negatives. Code for this project available at
https://github.com/henrishi/cs230

1 Introduction

Social science methods have traditionally relied on a batch of statistical methods that have evolved separately from machine
learning methods. As such, non-linear deep learning methods may develop new insights for long-standing social science
questions or offer new avenues to frame social science inquiries. In this project, I explore the application of deep learning to
preference predictions in the choice of schools and discuss the relevance of the results for social science research.

In this study, I used three class of neural network models to predict students’ choosing of a particular school in his or her public
school application. The data comes from administrative records of a large school district in the US. The networks take as input
pairs of student-school characteristics. The output of the neural network is slightly different across model classes. For one class
of models, the output is a softmax probability vector of length 149 (the number of schools in the choice pool). For the other two
of the model classes, a binary probability of a student choosing the paired school is the output.

We have reasons to believe that preference problems are productive space for application of deep learning algorithms. There exist
many potentially non-linear interactions between preferences for factors, e.g. parents may pick schools that have at least certain
good test scores before preferring shorter travel distance over longer distances. Although this project investigates preference
modeling in the education context, the applications of preference modeling are numerous. For example, online retailers such
as Amazon or Alibaba would be able to better manage their supply chain by producing a precise model of individual user
preferences and how they evolve over time.

Superior to online retail data, the school choice data for this project has a complete list of rankings among potential choices
which can be used as the ground truth reference.Educational choices are also more nuanced than online purchases. Agents
consider a wide range of factors and are less susceptible to strong influencing factors such as prices (in the public school context).
This makes for potentially more interesting models and more useful insights.

2 Related work

There is a large body of machine literature in predicting rankings as this type of objective is common to task such as search
engine queries, document retrieval, sentiment analysis, and product ratings (Cao et al., 2007; Liu and Others, 2009). A subset
of the ranking literature formulates the learning problem as one of learning preferences over a set of objects (Fiirnkranz and



Hiillermeier, 2010). In this formulation, the problem of learning preference functions can be formulated in one of two ways.
The first formulation is object ranking, where the objective is to rank any number of objects in a complete order holding the
preference fixed. The second formulation is label ranking, where a finite set of objects is held fixed and the objective is to learn
how input features correspond to different preference relationships among the fixed set of objects (Fiirnkranz and Hiillermeier,
2010; Kamishima et al., 2010).

One way of recovering total ranking is through training models that take pairs of input vectors and make binary classification
predictions. Fiirnkranz and Hiillermeier (2010) discussed how ranking problems can be characterized as generalized classification
tasks. Moreover, algorithms trained on the binary classification of pairs of objects tasks has been shown to be useful in recovering
the total rank order (Hiillermeier et al., 2008). Other examples include OrderSVR (Kamishima et al., 2010) and SVOR (Herbrich,
1999) where authors attempt to learn total ranking of objects by training support vector machines on pairs of objects with a
binary indicator of preference.

As a part of recent advancements in deep learning, Siamese networks have been responsible for the success of many one-shot
learning tasks including near human-level performance on face recognition (Taigman et al., 2014). In the original paper by
Bromley et al. (1993) on Siamese networks, the authors discussed how the structure of a pair of joining vectors lends itself to
naturally rank similarities between inputs. The Siamese structure may lend itself to flexibly modeling ranking relationships
between agent and object pairs for social science inquiries.

This study also extends work on heterogeneous preference modeling done by economists into the space of deep learning. Recent
efforts have been made by Athey et al. (2018) to estimate restaurant preferences using Bayesian latent characteristic estimations.
In a similar education setting to the current study, previous work by Neilson (2013) uses structural models to estimate parental
preferences for schools. A larger literature derived from consumer purchase data seeks to estimate the discrete choices of
consumers (Keane, 2013).

3 Dataset and Features

3.1 General Features, Preprocessing, and Split

The data comes from administrative records of a large school district in the US. The dataset includes both student and school
yearly characteristics and student choices of schools. The dataset spans the years 2005 to 2015. 110, 528 student submitted
choices over this 11 year period, the choices were among 149 schools in the district.

The student characteristics include variables such as age, ethnicity, parental education, achievement levels, and residential
location (GPS coordinates). The school characteristics include demographics of its students and some characteristics of its staff.
It also includes student achievement information and the location of the school (GPS coordinates). In each year each student can
submit up to 10 ordered choices of schools. However, many students do not utilize all of the 10 slots; the average number of
choices submitted is 5.8.

Although the data has been cleaned for academic research purposes, the data had to undergo significant restructuring to feed
into deep learning networks. I restructured the choice data so each record was a student-year-choice tuple. I merged student
choice data with both student background and school characteristics, leaving out the records of choices without matching student
characteristics. I then determined the suitable columns to use for the prediction task (values should be either measured before
submitting school choices or stable characteristics that do not change frequently). I also replaced missing values with the average
value of the column.

Finally, the resulting dataset after the aforementioned preprocessing step contains 486, 432 rows of student-year-choice tuples.
The training set was created by randomly sampling 92% of this dataset. The dev and rest sets were each allocated 4% of the
dataset.

3.2 Defining the Types of Choices

Since in this dataset, students typically submit more than one choice of school in a particular year, multiple definitions of the
what a valid choice means can be formulated. These formulations would depend on how to take into account the multiple choices
that a student submits.

In the absence of a strict guideline on this issue, I defined 5 different filters for different types of choices, these filters would be
used to create subsamples of the dataset for model training. anyChoice includes any choice the student submits. higherChoice
includes only the schools in the upper half of a student’s choice ranking. topChoicel, topChoice2, topChoice3 include the top 1,
2, and 3 choices of each student respectively.



3.3 Negative Outcome Augmentation

So far the dataset only contains positive outcomes of schools and students matched on student choice. To create negative
outcomes in this dataset, for each student-year combination, I filtered out the schools not on the list of choices for that student in
that particular year and randomly sampled 3 (for some datasets also 10) non-choice schools for each choice school listed. The
augmented observations receive an outcome of 0 indicating non-choice, while the original observations receive an outcome of 1
indicating a valid choice. The resulting dataset contains 1, 945, 728 observations, 4 times the original number of observations.
The 3-augmented datasets will hereon be referred to by 3 Aug and the 10-augmented datasets, 10 Aug.

4 Methods

To answer positive inquiries in social science, the models need to take into account the information embedded in student and
school characteristics to make preference predictions. As such, the following three classes of models were used to take advantage
of student and school feature vectors. In each of these models, the feed-forward mechanism works as follows. Let al¥l be the
activation of the Ith hidden layer, we have al!l = gl!l(2[1) where 21!l = w17 al'=1 4- b1l and g(.)1 is the activation of the Ith
layer. al = z is the input feature vector. Normalization was performed on each input vector before they were fed into the
networks. These models draw inspiration from various papers mentioned in related work:

1. Categorical is a simple baseline model using feed-forward network to accomplish multi-class classification (among the
149 candidate schools). The output of the model is a softmax function where o(2); = % for 7=12....K
I e

where K is the number of classes. This model only takes as input the student feature vectors and does not require the
use of the augmented negative outcomes.

2. Stacked is a feed forward network taking in a joined vector of student and school features to make a binary classification.
In this case the output of the model is a sigmoid function where o(z) = 1+.e+2k This model is inspired by the pairwise
classification-based approaches to retrieve utility function. This models used both positive and negative outcomes.

3. Siamese is a Siamese-like network where two networks are created separately for student and school features. Each
network feeds into two hidden layers of equal size. The absolute value of the difference of these hidden layers is fed
into a dense layer to model binary probability. The hidden feature layer can be expressed as f (24, ) and f'(x4.p,) for
students and school separately. The z for the output layers is therefore z = > w;|f(stu); — f/(Zscn)j/+b summed
over the length of the vector. z is then fed into the same output function as stacked. This model is inspired by the
pairwise approaches and the Siamese network’s natural capacity to model distance and orderings. This models used
both positive and negative outcomes.

For all three class of models, the cross entropy loss is used. Cross entropy for the multiple-class cases for an observation ¢ can be

expressed as L(gj(i), y(i)) = — Zj yji) log @;i) where j is the index of the softmax vector. In the binary prediction case, this

becomes £(5*),y™) = ~[y@ log(§*) + (1 — y®) log(1 - §)].
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Figure 1: Siamese Network Structure

5 Experiments/Results/Discussion

All models in this study are implemented with tensorflow (Abadi et al., 2016). Structural starter code was provided by the CS
230 teaching team at Stanford.



5.1 Model Space Search

The first task is to compare the performance of different models classes and choose one to explore in depth. I systematically
compared the three performance of three model classes by sampling a range of models from each class with different layers
and nodes (details in Hyper Parameter Section). The best performance out of candidates of the categorical model class rests at
28.7%. For the other two model classes, I use the F1 scores, the harmonic average of precision and recall, as the main evaluating
metric. The best performing Stacked and Siamese model class seems to be doing equally well on the 10 Aug data. However,
more models in the Siamese class ranked among the top performers for this data. The Siamese structure also enjoys natural
mapping to a “distance” metric between student and school feature vectors, which would be useful in social policy applications.
Thus, from here on, the Siamese model is chosen as the main model class of exploration.

Table 1: Baseline Performance of Different Models Classes
Model Class Accuracy Precision Recall FI1 Score Input Data
Categorical  0.287 - - - Top Choice (Student Data Only, No Augmentation)
Stacked 0.943 0.726 0.597 0.678 Top Choice Student and School Data (10 Augmented)
Siamese 0.942 0.689 0.667 0.678 Top Choice Student and School Data (10 Augmented)

5.2 Hyper Parameter Space

Through initial trial and error attempts at training the data interactively, I was able to develop some intuition about the ranges of
hyper parameter search. The plausible optimal learning rate range seems to be [10~%,1072]. In addition, a more significant
hyper parameter seems to be the number of layers of the neural network and how many nodes exists in each layer. The plausible
range of layers seems to be [1, 5] and the number of nodes of each layer between [20, 1000]. Other hyper parameters also include
dropout rate, feature vector size, and the weights of the cost function (details in next section). In total, around 400 model-data
combinations were sampled, trained, and evaluated.

To better engage this multi-dimensional sample space, I implemented a random sampler to create models with different sets of
hyper parameters. Certain hyper parameters such as node numbers and learning rate were randomly sampled on a log scale, while
number of layers, dropout rate etc. were sampled in their original value scale. The random sampling of these hyper parameters
allows me to more efficiently explore the sample space.

Notably, in my sampling process, I favored network structures with larger layers closer to the input and smaller layers closer to
the output. This is done for two reasons, 1) there is reason to believe lower level interactions between input features of the data
can be more useful than higher level features for this training task, 2) the Siamese network necessarily condenses into a small
feature vector at the very end. To favor this type of structure in the model sampling process, each layer is ordered based on the
size of its nodes. However, a “switch” parameter is implemented so that any two layers settings has a random probability of
switching their order. This allows for exploration of networks ordered in a different way.

5.3 Effect of Different Cost Functions and Dropout Rate

Table 2: Dropout and Weighted Cost (Top Choice 10 Aug)

Model Specification Accuracy Precision Recall F1 Score
Without Dropout Nor Label Weights  0.945 0.730 0.634 0.679
Dropout Rate = 0.3 0.945 0.744 0.611 0.671
Positive Label Weight = 2 0.939 0.649 0.724  0.684

One problem encountered in earlier iterations of the experimentation was that due to the larger number of negative-outcome
samples relative to the positive-outcome samples, the models were producing low recall rates. My attempt to solve this problem
was to implement a larger weight for positive labels in the loss function. This weight seems to produce the best results when set
between [1, 2]. Table 2. illustrates the effect of weighting the loss this way on a particular network with the top choice 10 Aug
data.

Another problem that only existed for larger models was the eventual over-fitting of the training data. This was more limited than
the recall rate problems. I implemented a dropout layer after the input layer and experimented with the dropout rate as a hyper
parameter to be sampled. Table 2 shows the result of implementing a large dropout rate of 0.3, for this particular network, this
seemed to have little effect on the general performance of the model.



5.4 Best Siamese Performance

Table 3. presents the best performing Siamese models for each dataset. The F1 score for 3 Aug data seems to hover consistently
at slightly over 0.8 regardless of the different definitions of how choice outcome was defined. For a larger augmentation of
10, the best Siamese performance slightly breaks 0.7. We note that the best performing model is also larger for this model
than optimal models for 3 Aug data. This suggest that a larger network structure may work better for cases where the negative
outcomes occupies a larger fraction of the sample.

Table 3: Best Siamese Model Performance

Data Set Accuracy Precision Recall FI1 Score Network Structure (Nodes Per Layer) Featur§
Vector Size
Top Choice (10 Aug) ~ 0.944  0.677  0.733  0.704 e [8;2}-36[3—9425_3—1115_ 565]76'20] 20
Top Choice (3 Aug) 0.907 0.779 0.893 0.832 StSuCh[1[2235 f()l-;l5322-g]0 ] 20
. Stu: [143-68-110-63-20]
Top 2 Choice (3 Aug)  0.910 0.812 0.848  0.829 Sch: [59-326-818-20] 20
Top 3 Choice (3 Aug)  0.907 0.791 0.862  0.825 Stu:s[05h1‘9[-7226§_-6752 6__1263]_20] 20
Any Choice (3 Aug)  0.904 0.788 0.849  0.817 Sts“c:h[,lf‘;g'ggz'é_lsol' 2_32'3]0] 20
Higher Choice (3 Aug) 0.906 0.775 0.882 0.825 gé‘ﬁ [[5?111%?)22%]] 20
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Figure 2: ROC Curves for The Best Siamese Models by Dataset

5.5 Discussion and Future Work

The Siamese model performed decently on the student-school paired data. The next step of future work on this project is to
investigate the performance of these models on the recovery of the complete preference order (not only binary outcomes) of
students. Another extension is the inclusion of temporal dependence for multiple choices made by the same student through time.
Finally, a counter-factual analysis of preference changes due to exogenous variations in choice set would elevate the value of
these models for social scientists and policy makers.



6 Contributions

This project was a sole-contributor project.
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