Implementation of Time-Delay Recursive Neural Network
for Classification of Security Price Jumps

Brandon Peh, Ren Hao Tan

Stock price manipulations by
“pump-and-dump” scammers involve
systematic trading of stocks with
uncertain fundamentals and low daily
trading volumes. A recurrent neural
network (RNN) trained on a set of
time-delayed covariates relating to
technical dynamics is shown to be capable
of forecasting the occurrence of these
activities in the US stock markets.

Index Terms—deep learning, stock price
prediction, investment science, recurrent
neural network, time-series analysis (G/1,
GI12, Gl4, G17)

I. INTRODUCTION

Significant and sudden increases in prices of
stocks happen frequently due to stock
market manipulations by “pump-and-dump”
scammers. A pump-and-dump scheme is the
illegal act of an investor or group of
investors promoting a stock they hold and
selling once the stock price has risen
following the surge in interest as a result of
the endorsement. In general, these scheme
go through the below phases:

® Phase 1: Stocks which have (i) small
market capitalization, (i1) low trading
volume and (ii1) volatile fundamentals
are selected by scammers to be “pumped
and dumped” as their prices can be more
easily manipulated

® Phase 2: Scammers Incrementally
acquire long positions in these targeted

stocks In a manner so as to avoid
detection, 1e. no significant price
movements

® Phase 3: Scammers trigger sudden price
increases through small but expensive
buy orders, alongside an aggressive
stock promotion campaign; “pump”

® Phase 4: Scammers take profit by selling
their long positions once stock price has
gone up substantially; “dump”

We wish to use deep learning to identify
stocks which are undergoing Phases 1 - 3 in
the universe of US NYSE, AMEX and
NASDAQ listed securities. This paper
hypothesizes that it is possible to adequately
describe Phases 1 - 3 using non-linear
interactions of four time-varying covariates:
prices, trading volumes, number of
outstanding shares and earnings.

Intuitively, in Phase 1, many metrics which
scammers could use to screen for potential
pump-and-dump stock targets are
derivatives of these four covariates.
Example:

Pump-and-dump Base fundamental
screening metrics metric

Market capitalization | Number of
outstanding shares,
price

Price-to-earning
ratio

Price, earnings

Earnings per share

Number of

outstanding shares,

earnings

Trading volume

Trading volume

Also, in Phase 2 - 3, the time-series variation
of price and volume across time could
potentially reveal the actions of scammers.

Example:

Scammer actions

Price & volume
variations

Scammers
incrementally acquire
long positions in these
targeted stocks in a
manner so as to avoid
detection, i.e. no
significant price

Consistent and
significant
increases in
volume across a
few days with
minimal price
impact

movements

Scammers trigger Surge in prices
sudden price increases | despite limited
through small but volume increase
expensive buy orders,
alongside an
aggressive stock
promotion campaign;
“pump”

II. MODEL SPECIFICATION

We assume that variations in the patterns in
price-volume movements which relate to
identification of “pump-and-dump” schemes
are generally shift-invariant, in that they are
generally independent of prior determination
of the start of the pattern. Accordingly, we
are able to expand the set of raw time-series
covariates of a stock, i.e. daily closing price
P(t), daily trading volume V(t), number of
outstanding shares N(t) and trailing-twelve

months earnings E(t) into multiple tuples of
observation.

In particular, we assign a time delay of 20
trading days such that the covariates at any
time t becomes:

X, =<P(i),V (i), EQ@), N
Vi e[t-19, 4>

This paper defines a sudden increase as a
price jump of more than 50% across a
five-day trading period. Therefore, the
dependent variable at any time t is:

P(t+5
o= (G2 >15)

We train the model on available data from
1** February 2008 to 31% January 2015.
Testing is then applied using data from 1%
February 2016 to 31* January 2018. To
reduce noise in the neural network, we
reduced the set of all NYSE, AMEX and
NASDAQ stocks to only those with current
price < 10 and current beta > 1.0. This i1s
because we assume that most stocks targeted
for “pump-and-dump” schemes exhibit these
financial attributes.

For our baseline results, we used a logistic
regression model to determine the baseline
results for comparison. A table of results is
displayed under the results section.

The logistic regression revealed an
underlying challenge in our project. On the
one hand, the skewness of our data towards
a non-positive response meant that there was
a limited amount of learning for positive
predictions. On the other hand, we are more
interested in the model’s ability to predict
positive outcomes (which are financially
profitable results).

In fact, traditional measures such as the
ROC curve would mask much of the
weakness in the set-up.

ROC

TPR
0.6

0.2
1

0.0

FPR

Figure 1: ROC for Baseline Logistic Model

We saw that it is theoretically possible to
fine-tune the hyperparameters in order to
improve precision. In this instance, we
varied the cut-off for the estimator in
predicting a success case.

precision

threshold

Figure 2: Precision against Threshold Variation

A high precision comes at the cost of a low
TPR. In other words, we are almost
dropping all the instances of stock market
manipulation. It could very well be but a
lucky overfitting that we can catching that
one or two particular instances of TP to give
a misleadingly high precision rate.

| | |

precision

|

00 02 04 06 08 1.0

TPR

Figure 3: Precision against TPR

Despite discovering the weakness of our
project set-up, we decided to go ahead and
implement the TD-RNN to verify if the
results could be improved. We used a
four-layer RNN to improve on the baseline
results. The RNN model that we used stores
the variables of the preceding layer as
context nodes. Past units (either inputs or
hidden variables) are able to interact with
subsequent units despite already having
been fed-forward. The purpose of
implementing such a neural network is to
allow base variables like price and volume
to interact non-linearly with derivative
factors such price changes or price-earning
ratios to codify more complex technical
variations. Figure 4 illustrates how our RNN
1s structured.

P(t-19) . ‘,\ | Hidden Variables | | Hidden Variables |

1@\
: \\ 1 @~
H \X/| e
- \yzgj\\ //// ® R
=]® /e — >
=84 =
: /‘//‘M/ / =
N/ /=]
1/ /
(o)] \Fme| / Fe
e =/ =
10 /] | =e
| ®
F1® ' (=2 e
Je i
@. Input variables
. reintroduced as
Context nodes

Figure 4: Structure of TD-RNN

For the hidden layers, we employ RelLu
activation function to accelerate learning
and avoid vanishing gradient. Since we are
solving a binary classification problem, a
Softmax classifier is used for the outcome
layer to generate an predictor between 0 and
1. Mathematically, the RNN is described as
follows:
A = ReLu(w VX, + b1

2] = [21[1] (2] (2]

h™ = ReLu(W ,“h '+ U, X, + b,™)

¥, = Softmax(W,h*' + U, X, + b))
¥, = 1(%,>0.5)

where !l represents the i-th hidden layer
and W, U and b are parameter matrices.

For the initialization of these matrices (i.e.
W, U and b), we used the Xavier
initialization as discussed in lecture to
ensure that the gradients can be propagated
through the neural network without
vanishing or exploding.

An investor who uses our model in an
attempt to profit from anticipated price
increases would (i) incur additional risk
from each positive prediction and (ii) profit
only from each true positive prediction. In
other words, he is primarily concerned with
the maximization of precision (i.e.
true-positive to positive ratio). Therefore,
we use a weighted cross entropy loss
function shown below to maximize our
precision.

L== Bylog@) + (1-y)log(1- 7))

III. RESULTS

The following table 1s a summary of the
results that we obtained from the different
models and loss functions that we have
implemented.

Model Loss Training Test
Function Precision | Precision
Logistic Cross 5.069% 4.000%

Regression Entropy

Logistic Weighted 6.711% 5.769%

Regression Cross
Entropy
TD-RNN Weighted See See
Cross Figure 2 | Figure 3
Entropy

Tralning Predsian v Epochs Tralned [TD-3WN)

Figure 5:Training precision of TD-RNN
against the number of epochs trained

lest Frecisicn ws Eoochs Tramedi 1D-SMK]

i) I
Herze Wigesds

Figure 6:Test precision of TD-RNN against
the number of epochs trained

IV. DISCUSSION

The results obtained were not surprising.
Given a weighted cross entropy loss
function, we can make the cost of predicting
a false positive higher, thus improving our
precision greatly. This is a similar exercise
to fine-tuning the threshold level for a
logistic regression as demonstrated earlier.
The allowance of non-linear variations in a
TD-RNN allows for some improvement;
however, this improvement in precision is
not sufficient for the model to be applied to
a real security with huge price movements.
This is because the model may be able to
predict a true positive accurately, but it gives
too many false negatives. Therefore, most of
the time, the model is unable to identify
other true positives that may occur and this
1s an area that requires further research.

Another weakness in this project could be
attributed to the way we split the
train-validate-test sets—we did so after the
application of a shifting time-delayed
window, not before. As a result, our test set
did not vary substantially from the training
set; this could be a source of overfitting. In
future, it could be better to differentiate the
examples temporally.

V. FUTURE WORK

The nature of the project—which is to
identify rare and arguably idiosyncratic
occurrences in a noisy dataset meant that
much of the weaknesses demonstrated could
not be ameliorated entirely. We hypothesize
that it may however be possible to reduce
the skewness of the dataset by changing the
problem into one which asks “given that we
know stock X is a pump-and-dump stock,
could we then predict when the scam would
have occured?”. Such a project specification
would drive out any idiosyncratic effect
while greatly reducing the skewness of data.

In future, we would think it is possible to
complement the classification TD-RNN with
a LSTM neural net model which describe
the price movements for each security. An
investment decision to purchase a security
can then be based on an ensemble learning
combination of both models - one indicating
a likelithood of a price jump and another
forecasting future prices.

VI. CONTRIBUTIONS

Brandon: Wrote all of the code for
collecting the data, preprocessing the
dataset, implementing the baseline model
and the TD-RNN. Performed debugging for
the models. Designed the poster.

Ren Hao (mot enrolled in the class):
Design the TD-RNN with loss function
specification. Wrote the report.

VII REFERENCES

E. Hadavandi, H. Shavandi, A. Ghanbari,
“Integration of genetic fuzzy systems and artificial
neural networks for stock price forecasting”,
Knowledge-Based System, Vol. 23, No. 8, 2010, pp.
800-808.

A. Fan, and M. Palaniswami, “Stock Selection Using
Support Vector Machines”, Proceedings of the
International Joint Conference on Neural Networks,
Vol. 3, 2001, pp. 1793-1798.

K.J. Kim, and W. Lee, “Stock Market Prediction
Using Artificial Neural Networks”, Neural
Computing & Applications, Vol. 13, No. 3, 2004, pp.
255-250.

K.Y., Shen, “Implementing Value Investing Strategy
by Artificial Neural Network™”, International Journal
of Business and Information Technology, Vol. 1, No.
1,2010, pp. 12-22.

