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Abstract

While interactive imitation learning methods such as
DAGGER address the compounding error issues that
plague simpler approaches to imitation learning such
as behavioral cloning, they require the continual pres-
ence of an expert throughout the training of the novice
policy. This is a particular limitation in domains where
access to the expert is expensive, such as in human-
in-the-loop imitation learning. Prior work on this prob-
lem has focused on minimizing the total number of ex-
pert queries required by DAGGER-like algorithms. This
work focuses instead on minimizing the total number of
trajectories required by DAGGER to achieve good per-
formance. We explore using reinforcement learning in
imperfect simulators of the target environment to learn
good initializations for the novice policy. When repre-
senting policies as deep neural networks, the straight-
forward application of this method is found to suffer
from catastrophic forgetting. We consider an alternative
method that interleaves steps of behavioral cloning and
reinforcement learning, showing improvement over the
naive approach.

1. Introduction

A. Background and Motivation

Action execution is generally far slower and more expensive
in real-world domains than it is in simulation. This makes
it difficult for deep reinforcement learning algorithms to ac-
quire the large amounts of data they need to perform well.
Imitation learning is a compelling alternative in these types
of settings, as the generally richer training signal imitation
learning methods provide to the learner allow for signifi-
cantly lower sample complexities (Sun et al. 2017).

Unlike in reinforcement learning, where the agent learns
via a reward signal received during interaction with its envi-
ronment, in imitation learning the agent or “novice” learns
by observing demonstrations - sequences of states and ac-
tions - provided by an expert teacher. The simplest ap-
proach to imitation learning is behavioral cloning, in which
the novice is trained via supervised learning on a dataset
of state-action tuples extracted from the provided expert
demonstrations (Ross, Gordon, and Bagnell 2011).

Behavioral cloning performs poorly both in theory and
practice, however, due to data mismatch and compounding
error issues. One method that has been proposed to address
these issues is DAGGER, an iterative algorithm which gen-
erates training trajectories with a mixed policy constructed
from the expert policy and the current instantiation of the
novice policy. At each time step in a training trajectory,
DAGGER queries both the novice and expert for their ac-
tions, appends to the training dataset a tuple consisting of
the current state and expert action, and then executes either
the expert action with some probability 3 or the novice ac-
tion with probability 1 — 5. The parameter (3 is generally de-
cayed over training epochs. DAGGER can be shown to pro-
duce a stationary deterministic policy with good guarantees
on performance under its induced state distribution (Ross,
Gordon, and Bagnell 2011).

While interactive imitation learning methods such as
DAGGER address the compounding error and data mis-
match issues inherent to behavioral cloning, they place a
greater burden on the expert, as they require it to be present
throughout the training process (Ross, Gordon, and Bagnell
2011). Access to an expert is frequently expensive, however,
particularly when working on complex, real world tasks -
such as autonomous driving (Zhang and Cho 2017), robotic
surgery (Laskey et al. 2016), and autonomous helicopter
flight (Abbeel, Coates, and Ng 2010) - where we would like
to employ a human as our reference policy.

Previous work has sought to minimize the frequency with
which the expert policy is queried during training (Kim and
Pineau 2013; Laskey et al. 2016; Zhang and Cho 2017).
However, the overall number of training trajectories required
to reach good performance is an equally if not more impor-
tant limiting factor in human-in-the-loop imitation learning.
Since prior methods still require the expert to be “on call”
at all times during the training process, they do not address
this highly relevant minimization.

A.1 Contributions

It is often the case that we have access to an imperfect sim-
ulator of our target environment (Cutler, Walsh, and How
2015). In this work, we examine how we might lever such
access to reduce the number of trajectories required by
DAGGER to reach good performance. Our proposed method



is to train a policy in simulation using standard deep rein-
forcement learning techniques and then to use this trained
policy as an initialization for the novice policy in DAGGER.

In order to allow our policies to handle complex tasks in
continuous, high-dimensional state and action spaces, we
choose to represent them as deep neural networks. How-
ever, naively applying our method in this setting results in
poor performance, offering no discernible improvements in
sample complexity. We examine various potential causes
for these results, concluding that catastrophic forgetting is
largely responsible. We then outline a potential method for
mitigating this issue using multi-task learning.

2. Methods

The DAGGER algorithm requires as an input some initial
novice policy. Usually, the novice is initialized randomly, or
via simple behavioral cloning. Our method proposes to use
deep reinforcement methods to train a good initialization for
the policy in simulation. Specifically, this policy will be rep-
resented using a deep neural network mapping observations
of the environment into actions.

This method assumes access to a simulator with obser-
vation and action spaces identical to those of the target en-
vironment, so that the policy trained in simulation can be
directly ported over to the target environment. The observa-
tion and transition models of the simulator and target envi-
ronment may differ in nontrivial ways, however.

The rationale behind this method is that we are only re-
quiring DAGGER to fine-tune the novice policy rather than
to train it from scratch. Provided that the simulator cap-
tures salient features of the target environment, some of the
knowledge gained via training in simulation will likely be
useful in the target domain. For example, in the domain
tested in this work, the agent has access to noisy lidar scans
of its environment rather than its true state. Learning to parse
these lidar measurements is a potentially transferable skill
that would be highly useful in the target domain. Acquiring
such knowledge in simulation could shift much of the learn-
ing burden onto the reinforcement learning algorithm and
away from DAGGER, allowing DAGGER to achieve good
performance in fewer iterations and thereby lessening the
supervisory burden placed on the expert.

3. Experiments

A. Environment

A variant of the Dubins Car Lidar environment used
in (Menda, Driggs-Campbell, and Kochenderfer 2017) was
constructed to test the methods developed in this work. This
“bottleneck” environment, illustrated in Figure 1, consists of
a pair of rooms connected by a narrow tunnel. The agent is
a small Dubins car with constant velocity. It starts with a
random pose within the first room and must find its way out
to the exit in the second room. An episode terminates if the
novice collides with a wall or successfully manages to exit.

Figure 1: The bottleneck environment, rendered without sen-
sor noise.

The agent has access not to its true state but rather to noisy
“lidar” measurements of its surroundings: range measure-
ments to the nearest obstacle along 100 equally spaced rays
propagating out from the car. The action returned by the pol-
icy is an angular velocity, which is clipped at 1.0 rad/s.

Zero-mean Gaussian noise is injected into the positional
component of the state transitions. Additionally, there is a
persistent drift force acting on the the agent throughout the
environment causing an additional displacement in the pos-
itive y-direction (upwards in Figure 1).

The simulator environments differ from the target envi-
ronment in two ways. The first is that they have a noise-
less observation model. The various simulator environments
tested also differ from each other and from the target en-
vironment in that they only capture varying fractions of the
full strength of the drift force used in the target environment.

B. Policies

All policies - both the expert and the novices - are repre-
sented as deep neural networks. The input to the networks is
the 100-dimensional lidar scan of the environment. The out-
put is a single real number representing the desired angular
velocity for the agent.

All policy networks have three densely-connected hidden
layers of size 64 units, 32 units, and 32 units. We used hyper-
bolic tangent activations for all layers, including the output
unit. All of the network weights are initialized using Xavier
initialization, and all of the biases were initialized to zero.

During the supervised learning phase of imitation learn-
ing, we employed a learning rate of 0.001 and L1-
regularization with a regularization parameter of 0.001. We
used a minibatch size of 8.

All policies were initially trained with rllab’s implemen-
tation of trust-region policy optimization (Duan et al. 2016;
Schulman et al. 2015), using a discount rate of 0.995 and
a learning rate of 0.01. Rollouts were capped at 750 time-
steps. We also defined a reward function for the environ-
ment in order to apply TRPO: the agent receives a penalty
of -10,000 for colliding with a wall, a reward of 100,000
for successfully exiting the second room, and a one-time re-
ward of 1,000 both for entering the tunnel and for reaching
the second room. We ran TRPO for 100 epochs in all cases,
although it usually found good policies much sooner.



C. Experimental Setup'

We evaluated the performance of DAGGER in the bottleneck
environment in six cases. The baseline case evaluated the
performance of standard DAGGER, using a randomly ini-
tialized novice policy. The other five cases examined the
performance of DAGGER when the novice policy had un-
dergone RL pretraining in simulation. The five pretrained
novice policies were trained in different simulators with
varying degrees of fidelity. Performance was measured by
the probability that the agent could successfully reach the
exit within 750 time steps without colliding with a wall.

In all experiments, the dimensions of the rooms were set
to be 70m by 70m, while the tunnel was 15m long and 10m
wide. The exit in the second room was also made 10m wide.
The agent’s fixed velocity was set at 10 m/s, and time was
discretized into 0.1 second steps. In all environments, we
used transition noise drawn from a Gaussian with o = 1m.
The upwards drift in the target domain was set such that it
resulted in an additional displacement in the positive y di-
rection of 0.5m per time step if not corrected by the agent.

For each experiment, we performed 20 DAGGER runs.
The parameter 3, which determines the probability of ex-
ecuting the expert action in any given time step during a
DAGGER rollout, was initialized to 1.0 and then decayed
by a factor of 0.75 after each training epoch. The expected
performance of the novice at a given epoch during a given
DAGGER run was evaluated via 40 rollouts in the target en-
vironment.

4. Results
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Figure 2: Performance of DAGGER given a randomly initial-
ized policy (blue) and pretrained policies (orange and red).
Error bars indicate standard deviation.

Figure 2 shows the baseline performance of DAGGER,
as well as its performance when the novice policy was pre-
trained in simulators where the drift force was 10% and 75%
of that of the target environment. Since the performance of

!Code written for this project can be found at
https://github.com/MichaelKevinKelly/Final_
Project_CS230/tree/master/ImitationLearning.

DAGGER was essentially identical across the five pretrain-
ing regimes, only two of the five were plotted. The error bars
(for this chart and for all charts in this paper) show standard
deviation and indicate significant noise in the learning pro-
cess.

Figure 2 appears to show no benefit to pretraining in sim-
ulation. Not only is there no additional benefit to pretraining
in the higher fidelity simulator relative to pretraining in the
lower fidelity simulator, there seems to be no benefit to pre-
training of any kind over the baseline approach, where the
novice is initialized at random. We examine potential causes
for this result in the following section.

5. Evaluation

A.  Weight Initialization

The baseline method tested in our experiments used a novice
network initialized with Xavier initialization, a method of
weight initialization that allows for more efficient training
of deep neural networks by addressing the vanishing gradi-
ent problem (Glorot and Bengio 2010). Our method, on the
other hand, employed a novice network with weights that
were pretrained using TRPO. We suspected that this initial-
ization might result in slower learning, counteracting any
benefits from starting out with knowledge gained from the
simulator. In other words, we thought that the supervised
learning routine used in imitation learning might have been
tuning the novice initialized with Xavier initialization much
more efficiently than the novice initialized using TRPO pre-
training in simulation.
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Figure 3: Performance of DAGGER given a novice policy
initialized with Xavier initialization (blue - same as in Fig-
ure 2) and with weights drawn at random from a distribution
over weights similar to those seen in novice networks pre-
trained with TRPO (orange)

To test this theory, we compared the performance of
DAGGER using two random novice initializations. The first
used Xavier initialization (i.e. the baseline approach from
the experiments described in Section 3.C), while the second
was initialized with weights drawn at random from a nor-
mal distribution with mean and variance equal to the mean
and variance of the weights in the corresponding layer of the
TRPO-pretrained network. Experiments were performed in



the same manner as described in Section 3.C, and the results
are plotted in Figure 3.

The results show no significant difference between the
two initializations, perhaps because this network is not suf-
ficiently deep to see a significant benefit from Xavier initial-
ization. In any case, Figure 3 strongly suggests that we must
look elsewhere to understand the failure of our RL pretrain-
ing method to outperform the baseline.

B. Catastrophic Forgetting

Catastrophic forgetting refers to the tendency of artificial
neural networks to abruptly lose previously learned knowl-
edge about a task (e.g. task A) when trained on new data
relevant to a different task (e.g. task B). Catastrophic forget-
ting occurs specifically in the continual learning domain -
when the network is trained sequentially on multiple tasks
- because the network weights that are important for task A
are changed to meet the objectives of task B (Kirkpatrick et
al. 2017).

To see how catastrophic learning poses a challenge in our
domain, we note that there likely exist multiple good poli-
cies in a given environment that nevertheless display signifi-
cantly different behavioral styles. In the bottleneck environ-
ment, for example, it is often the case that, as the agent ap-
proaches the tunnel, the transition noise perturbs the agent
in such a way that it is no longer safe to attempt to enter
the tunnel. Rather than continuing ahead, most policies in-
stead learn to loop back and then realign for another attempt
at accessing the tunnel. However, some policies learned to
perform a clockwise loop, while others learned to perform
a counter-clockwise loop, and there does not seem to be a
strong reason to prefer one approach over the other. These
maneuvers are demonstrated in Figure 4.

Figure 4: Illustration of different “resetting” behaviors
learned by TRPO. The novice’s original approach to the exit
(the blue line) is perturbed at the red point, and as it is unsafe
to enter the tunnel at a sharp angle, the agent loops back for
another attempt. The yellow and green lines represent two
distinct and yet essentially utility-equivalent ways of per-
forming this recovery maneuver.

In addition to the multiple equally good approaches to this
specific subtask, it also seems likely that there are multiple
equally good approaches to many other subtasks as well. If
we view higher level control policies as amalgamations of

these various lower level methods, then we can expect that
there will exist a number of distinct high-level policies that
can achieve similar levels of performance on the higher-level
task. In this domain, it appears that TRPO can converge to
multiple such policies.

We suspect that this diversity of good policies is the un-
derlying cause for the poor performance of our method be-
cause, when performing imitation learning, it means that we
will often be switching between highly distinct behavioral
modes. The novice will thus be training on a new and suf-
ficiently distinct task, resulting in catastrophic forgetting. In
other words, rather than simply fine-tuning the policy to ac-
count for the differences between the simulator and the tar-
get environment, the novice agent is instead learning a com-
pletely new policy, and in so doing it is overwriting knowl-
edge learned from pretraining in simulation.

To test this hypothesis, we used TRPO to train two poli-
cies in an identical environment, with an upwards drift of
0.9m per time step. One of the policies was randomly se-
lected to be the expert while the other was selected to be
the novice. We then ran DAGGER using the two policies,
performing the same number of runs and evaluating perfor-
mance in the same manner as the experiments discussed in
the previous section.
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Figure 5: Performance of DAGGER when the novice is pre-
trained in the target environment with TRPO (orange) and
with both TRPO and behavioral cloning (red).

The results of this experiment are plotted on the orange
line in Figure 5. Since the novice was pretrained in the target
environment, it initially demonstrates perfect performance.
However, the initial imitation learning epochs rapidly de-
grade its performance, demonstrating the effects of catas-
trophic forgetting. Only once training has progressed for a
while and the novice begins to gets better at mimicking the
expert does its performance begin to climb back up to its
previous level.

Clearly, catastrophic forgetting is a fundamental chal-
lenge complicating the use of RL pretraining to speed up
imitation learning methods. The following section outlines a
method to mitigate this problem.



C. Overcoming Catastrophic Forgetting

One of the classic methods used to address catastrophic for-
getting is to move the problem from the sequential learning
setting to the multitask learning setting. In multitask learn-
ing, data from all of the tasks of interest are made avail-
able to the neural network during a single training period.
This prevents forgetting because the weights of the net-
work can be jointly optimized for all of the tasks simulta-
neously (Kirkpatrick et al. 2017).

We would like to find a good policy in simulation that
is fairly similar to the expert policy, so that when we per-
form imitation learning we do not completely retrain the
novice network. Adapting the multitask learning paradigm
to this setting, we decided to interleave rounds of behav-
ioral cloning with TRPO in the pretraining phase. In partic-
ular, we divided the 100 TRPO epochs into ten blocks of
ten epochs and preceded each block with a single round of
behavioral cloning. The inclusion of behavioral cloning in
the pretraining phase is intended to guide the reinforcement
learning process towards a good policy with similar behav-
ioral characteristics to that of the expert. Since behavioral
cloning does not require the presence of the expert at train-
ing time, this method does not create any additional super-
visory burden.
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Figure 6: Performance of DAGGER when the novice is pre-
trained with behavioral cloning (blue), with TRPO in a sim-
ulator (orange), and with both behavioral cloning and TRPO
in a simulator (red).

We initially tested this approach in the setting where pre-
training is performed in the target environment (that is, in
the setting where our “simulator” has perfect fidelity). The
results are displayed on the red line in Figure 5. As before,
the novice initially displays perfect performance and, as be-
fore, it suffers from forgetting during the imitation learn-
ing process. However, this forgetting is milder than that ex-
perienced by the novice pretrained using pure RL, and the
novice returns to perfect performance much more quickly.
Thus, it appears that combining behavioral cloning and rein-
forcement learning in the pretraining phase does indeed help
us find a good policy that can be quickly fine-tuned to match
the expert.

We also tested this method on the main problem of inter-
est: the transfer task where pretraining occurs in an imper-
fect simulator of the target environment (which again had

an upwards drift of 0.9m per time step). The results of this
experiment are shown in Figure 6.

The red line again shows the performance of DAGGER
when the novice has been pretrained using the combined
method consisting of both TRPO and behavioral cloning.
This approach clearly outperforms the simpler approach of
pretraining using reinforcement learning only, which is rep-
resented by the orange line. This suggests that the combined
method does indeed find a better novice initialization than
the naive, RL-only pretraining method. However, the pure-
RL pretraining method is likely an overly forgiving base-
line, as it involves training on less data than the combined
method.

A fairer comparison can be made against a method that
pretrains the novice with behavioral cloning only, using the
same number of behavioral cloning rounds as employed by
the combined pretraining method. The performance of this
approach is shown in the blue line in Figure 6. Unsurpris-
ingly, this approach also appears to avoid the issue of catas-
trophic forgetting and also demonstrates significantly faster
learning than the pure RL pretraining method. The combined
method does however appear to slightly outperform the pure
behavioral cloning approach, reaching a slightly higher level
of performance somewhat faster. If this performance gap is
genuine, and not a result of the small number of initializa-
tions tested (i.e. three per method), then it may be the case
that the novice is employing knowledge about regions of the
state space that were explored during RL pretraining in the
simulator, but not encountered in the expert trajectories used
in behavioral cloning.

6. Conclusion and Future Work

In this paper, we described a method intended to reduce
the sample complexity of DAGGER-like algorithms by pre-
training the novice with reinforcement learning in an im-
perfect simulator of the target environment. This approach
was shown to perform poorly, likely as a consequence of
catastrophic forgetting. We introduced an extension that
addresses forgetting by interleaving rounds of behavioral
cloning into the RL pretraining process. This method was
found to drastically reduce forgetting, and may also improve
learning performance in the original transfer task.

Future work on this topic should include more extensive
testing using a larger number of novice initializations, en-
vironments, and simulators. Exploring more sophisticated
ways of addressing catastrophic forgetting might also be a
useful extension of this work. One such extension could be
to augment the supervised learning procedure used during
imitation learning with elastic weight consolidation (Kirk-
patrick et al. 2017), which selectively slows down learn-
ing on weights that are particularly important for previously
learnt tasks. Examining ways to interleave imitation and re-
inforcement learning at a finer level during pretraining might
also be productive. For example, demonstration trajectories
provided by the expert could be used to shape the reward
function used by the reinforcement learning algorithm, in an
inverse reinforcement learning (IRL)-style approach.
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