Estimating the Discrete Fourier Transform using Deep
Learning

Jonathan Tuck
Department of Electrical Engineering
Stanford University
jtuckl@stanford.edu

March 20, 2018

Abstract

Throughout a wide variety of fields, the Discrete Fourier Transform (DFT) is used
as a method of analysis of a signal’s frequency components. In this paper, we show
that a simple three-layer neural network with linear activation functions can estimate
the DFT to high accuracy. We test our architecture on a variety of signals, and gauge
both its accuracy and its speed against the ground truth and its fast, state-of-the-art
implementation. We find that our neural network architecture achieves results very
close to that of the ground truth, and that our implementation for our problem instance
provides extremely similar accuracy, and is faster than both the naive implementation
and the state-of-the-art implementation.

1 Introduction

Throughout a wide variety of fields — from signal processing [OSB99], to medical imaging
[Ste00], to optics [Goo96] — the Fourier Transform has been used as an important tool
for signal analysis, allowing one to decompose a signal in space or time into its frequency
components. Typically, when one wants to analyze a signal, it requires the knowledge of the
Fourier Transform (sometimes referred to as the spectrum) of the signal.

The goal of this project is to estimate the DF'T of a signal using a neural network archi-
tecture. This neural network should be able to estimate the Discrete Fourier Transform of
the signal without having to explicitly compute the Discrete Fourier Transform. Ultimately,
the results of this project may lead to a robust deep learning architecture able to compute
the DFT of a signal faster than the current state-of-the-art algorithm, the FFT [CT65].

2 The Discrete Fourier Transform

The context and background for this project is abundant. Although there exist many for-
mulations of the Fourier transform [Osgl7], the scope of this project will only deal with the

1

0 20 10 60 80 100
Discrete-time index n

100

Re{F{f}[m]}

&
g &
i

0 20 10 60 80 100
DFT index m

Figure 1: Discrete-time signal f[n] = Z?Zl cos(2min + i) and the real part of its DFT,
Re{F{f}[m]}.

(real part of the) DFT, the version that maps from discrete-time to discrete-time, as that
is what computers mathematically can handle. The N-point DFT F : RY — RY for an
N-dimensional discrete-time signal [Bra78, Osgl7] f = (f[0], f[1],..., f[N —1]) is defined as

F{f}[m]:if[n]e%im”m, m=0,...,N—1 (1)

Figure 1 illustrates a simple example of a discrete-time signal f[n] and the real part of its
DFT, Re{F{f}[m]}.

The DFT in equation (1) can be written as a dense (complex-valued) matrix multipli-
cation, i.e., F{f} = Df, where D € CY*¥ is a complex matrix with values e?™/N in
the (m,n)-index. As the DFT can be computed via a dense matrix multiplication, one can
compute the DFT naively in O(N?) time. In addition, there exists a method to compute
the DFT in O(N log N) time, the FFT. The details of the FFT is beyond the scope of this
project, and we refer the interested reader to [CT65].

3 Approach

Evaluation metrics. The evaluation of this project shall be based on how close the neural
network estimates for a signal’s DF'T are to the actual signal’s DFT. Specifically, the cost
function used is

J = (1/m) Z IE{f} = ELfE,

where m is the number of examples in the set, F'{f;} € RY is the vector of actual DFT
for the i-th example, and F{f;} € R" is the DFT estimate for the i-th example. In signal

2

processing literature, this particular cost function is referred to as the mean squared error
(MSE) of the estimates [GD10].

3.1 Neural network architecture

We recognize that since the DF'T is simply a matrix multiplication, it is trivial to learn the
DFT matrix with a one-layer neural network with 100 nodes and a linear activation function.
However, we specifically look to learn the DFT matrix with a neural network architecture
that emperically shows faster DF'T computation times.

Our neural network architecture is three layers of fully connected layers, with 17, nodes
per (hidden) layer. Intuitively, as the DFT of a matrix can be described as a matrix multi-
plication, we pick all of the layers’ activation functions to be linear activation functions (and
indeed, linear activation functions yielded the greatest performance.) In addition, we used
a learning rate of 0.001, a minibatch size of 250, and a drop-out probability of 0.9 (other
forms of regularization, such as L2 and L1 regularization, did not increase training accuracy.)
We pick these values because our architecture with these hyperparameter values yielded the
lowest values of the cost function J on both the training and test data.

4 Data

In order to keep the scope of this project manageable, we shall consider only real, one-
dimensional signals (e.g., f[n] = cos(n)), although Fourier transforms and DFTs can be
extended to two-dimensional signals (e.g., g[n, k] = cos(n) cos(k)) and so on [Osgl7]. We a
priori fix the maximum bandwidth to 10 Hz, so that aliasing does not occur for our results
[OSB99]. In addition, the time series data is discretized into 100 elements which correspond
to evenly spaced indices ¢ € [0,1]. That is, the input signals are vectors in R'™. For the

remainder of this paper, when we refer to the DFT, we mean the real part of the 100-point
DFT.

4.1 Training and test data

Discrete-time time series data is readily abundant and training data can be synthetically
generated efficiently. Since all signals are simply sums of sinusoids at different frequencies
and amplitudes, it is appropriate to synthetically generate data by simply adding randomly
generated sinusoids together, some with various types of noise (e.g., white noise, pink noise,
etc..) For each example, we shall randomly choose the number of sinusoids to be added, and
their frequencies. The test data shall be generated in the same way that the training data
is generated. In this way, the training data and the test data shall be drawn from the same
distributions, so as to minimize variance.

Data splits. In this project, we split our m = 30000 examples into training, development,
and test sets. We have chosen that 90% of the data is dedicated to the training set, and the
remaining 10% is dedicated to the test set. We found that we did not need to allocate any
data to include a development set.

10% 4

ion

102 4

Cost Funct:

10* 4

o

T T T T T T T T T
0 250 500 750 1000 1250 1500 1750 2000
Iterations (per tens)

hias oo bundodd b)

Figure 2: Cost versus epoch on the training data.

5 Results

We examine the accuracy of our neural network architecture compared to the ground truth,
as well as the timing performance of the naive implementation of the DFT, the FFT, and
our neural network architecture on the data. We utilize the Python packages, NumPy and
SciPy, for the Fourier transform implementations [JOP™ | Oli]. We implement the neural
network architecture with TensorFlow [AAB*15].

5.1 Accuracy

Figure 2 is a plot of the cost J versus epoch on the training data for this particular problem
instance and initialization. For the hyperparameters specified in §3, our neural network
architecture achieves an MSE of 8.1 x 10~* on the training data and an MSE of 2.1 x 1072
on the test data after 10000 epochs.

Figure 3 is a plot comparing the real part of the DFT of an example in the test set versus
its neural network estimate. The two graphs are very similar, but not identical; we find that
for the particular example in Figure 3, | F{f} — F{f}|2/|[F{f}||2 = 6.0 x 10~*. This result
suggests that this particular neural network architecutre for estimating the DFT of a vector
is valid and can be used successfully.

5.2 Timing

Over the 3000 data examples in the test set, the naive implementation of the DFT averaged
a time of 4.1 us, the FFT averaged a time of 3.5 us, while our neural network implementation
maintained a time of 1.9 us, a time faster than both the naive implementation and the FFT.
These results show that there exists situations where the neural network architecture is faster
than the current state-of-the-art methods, at the cost of a negligible loss in accuracy.

100 = Neural network estimate

50 4

{F{f}m]}

T T T T T
—40 —-20 0 20 10

100 4 = Ground truth

T T T T T
—40 —20 0 20 10
DFT Index m

Figure 3: The real part of the DFT of an example (bottom) and the estimate from the output of
the neural network.

6 Future work

Exploiting structure. It is well known that many signal processing problems become
easier to solve if structure is exploited, such as in compressed sensing, where sparsity is
exploited to reduce the minimum sampling rate for perfect signal reconstruction [Don06]. It
is possible that these efficients can further be explained or exploited using neural networks
with a potentially sparse amount of weights, compared to the neural network of a DFT.

Other transforms. Although the DFT is the most widely known basis transformations,
there exists a wide variety of basis transforms that could be exploited using deep learning and
with wide-ranging applications, such as the Discrete Cosine transform in image compression
[ANR74, YL95], the Radon transform in tomography [Dea07], and the Continuous Wavelet
transform [Mal08]. The creation of such a neural network would potentially allow for a
much speedier implementation of a particular transform, designed for one particular task
(e.g., image reconstruction from a fixed image size.)

7 Contributions and acknowledgements

This project was designed, written, and programmed by Jonathan Tuck. The code for this
project can be viewed at https://github.com/jonathantuck/CS230-project.

The author would like to thank Xingyu Liu for his insightful comments on how to im-
prove this project, and for suggesting neural network architectures to use for this particular
application.

References

[AAB*15] Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

[ANR74]

[Bra7§]

[CT65]

[Dea07]

[Don06]

[GD10]

[Go096]

[JOP™ |

[Mal08]

Ol]

(0SB

[Osgl7]

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, lan Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Lev-
enberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris
Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal
Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas,
Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and
Xiaoqgiang Zheng. TensorFlow: Large-scale machine learning on heterogeneous
systems, 2015. Software available from tensorflow.org.

N. Ahmed, T. Natarajan, and K. R. Rao. Discrete cosine transform. I[FEFE
Transactions on Computers, C-23(1):90-93, Jan 1974.

R.N. Bracewell. The Fourier Transform and its Applications. McGraw-Hill,
Tokyo, second edition, 1978.

J. Cooley and J. Tukey. An algorithm for the machine calculation of complex
fourier series. Mathematics of Computation, 19(90):297-301, 1965.

S. R. Deans. The Radon Transform and Some of Its Applications. Dover Publi-
cations, Mineola, N.Y, 2007.

D. L. Donoho. Compressed sensing. IEFE Transactions on Information Theory,
52:1289-1306, 2006.

R. Gray and L. Davisson. An Introduction to Statistical Signal Processing. Cam-
bridge University Press, New York, NY, USA, 1st edition, 2010.

J.W. Goodman. Introduction to Fourier Optics. McGraw-Hill Series in Electrical
and Computer Engineering: Communications and Signal Processing. McGraw-
Hill, 1996.

Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source scientific
tools for Python, 2001—. [Online; https://www.scipy.org].

S. Mallat. A Wavelet Tour of Signal Processing, Third Edition: The Sparse Way.
Academic Press, 3rd edition, 2008.

T. Oliphant. NumPy: Open source scientific computing for Python, 2006—. [On-
line. www.numpy . org].

A. V. Oppenheim, R. W. Schafer, and J. R. Buck. Discrete-time Signal Process-
ing. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1999.

B. Osgood. Lectures on the Fourier Transform and its Applications. McGraw
Hill, first edition, 2017.

[Ste00]

[YL95)

S. Stergiopoulos. Advanced Signal Processing Handbook: Theory and Implemen-
tation for Radar, Sonar, and Medical Imaging Real-Time Systems. CRC Press,
Inc., Boca Raton, FL, USA, 1st edition, 2000.

B. Yeo and B. Liu. Volume rendering of DCT-based compressed 3d scalar data.
IEEFE Transactions on Visualization and Computer Graphics, 1(1):29-43, Mar
1995.

