Quantifying the power of light-controllable molecular motors:

Tracking velocities of individual actin filaments using (R)-CNN facilitated labeling
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Problem:

Light controllable molecular motors (myosins) have been
engineered to vary their speeds and direction upon exposure
to blue light, but quantifying their speeds in lit and dark states
has proved difficult [1.2.]

A method to determine the polar filament orientation and
position must be developed in order to track the signed
velocity [3] throughout a movie of filaments moving

Figure 1. The theory and structure behind an engineered,
hght contmllahle myosi 1

Figure 2. A schematic of the gliding filament assay and an example of the
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We first aim to implement a YOLO CNN algorithm to identify
polar filaments position and orientation by labeling random
frames throughout the videos of gliding data and training on
those data. If we can achieve that approach prior to the project
deadline, we will also attempt to implement an LSTM into our
method, creating a R-CNN, which can make use of the
information of previous and future frames to better detect
filaments (Figure 3).

Figure 3. Model of a R CNN [4] example labeling of polar

Context

Cytoskeletal motors perform the functions of force generation
and transport throughout eukaryotic cell species and types, from
the beating of cardiac myocytes to the long-range transport of
neurotransmitters or nutrients in plants. The Bryant lab has
designed motors that can be optically controlled in order to test
our understanding of protein structure-function relationships
and in order to develop new tools for controlling cellular
processes in vivo.

Data generation

‘We worked with a post-doctoral scholar in the Bryant lab, Paul
Ruijgrok, to collect videos of the myosin motors sliding actin
filaments in the lit and dark states and converted those videos
into 8-bit RGB jpeg files.

‘We then used labelbox an online image labeling toolkit to create
a training and test set of labeled images with filament positions
and orientations labeled.

Figure 4. Example labeling of polar filaments in the lit state using
using labelbox
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Model training

‘We chose to apply the YOLO9000 algorithm,[5] which has been
shown to be effective in cases where limited labeled pictures are
available for training. To do this, we needed to write a variety of
python scripts to convert our labeled file outputs to that which
could be interpreted by the NN implementation.

‘We broke up our labeled data such that 10% was reserved for
devj/testing and 90% was used for training. We chose not to have
a separate dev set for this case.

‘We also ensured that our test set had adequate lit and dark state
examples to be representative of the target population of images.

Evaluation metrics

We tracked the rate of training on a lab-quality personal
computer in order to get some understanding of the rate at which
we can expect raining to occur with our given model. We found
that each iteration takes approximately 5 minutes, so to get
through 100 iterations would take several hours. Therefore, we
have moved on to using the AWS cluster to train on our dataset.

(Preliminary) conclusions

Training was very slow, even with my NVIDIA GeForce GTX
1070/PCIe/SSE2, so we moved to an AWS deep learning-ready
image processing server today

Once one hundred iteration of training have been completed,
we will test our model on the rest of the labeled frames and
evaluate their efficacy both quantitatively (accuracy) and
qualitatively (does it roughly label the correct filaments?) to
determine if our model will be useful for determining signed
velocities.

We do hope to provide the Bryant lab with some idea of how
difficult a deep learning strategy would be to implement to solve
their filament tracking problem. More will be annouced by the
end of the course!
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