Generating Quick Drawings with LSTM Recurrent Neural Networks

Michelle McGhee (mmcghee@stanford.edu), James Ortiz (jameso2@stanford.edu)
Department of Computer Science, Stanford University

+ We want to create a program that takes in as * We used a GloVe model trained on a Wikipedia corpus of 6 billion tokens to Actual car First 50 points

inputs an object class and the first few points of a compute a 50-dimensional word embedding for the object class. o5 E%} o5 A

drawing and returns a prediction of the complete ~ * We then extracted the first fifty points from each test drawing and flattened these _:: [pes

drawing as output. arrays into vectors. . v 1 3 3 s 1 3 3
« For this task, we train an LSTM recurrent neural * Finally, we concatenated the word embedding to each of the flattened vectors and

Attempted car

network that had been developed to take in a fed the resulting vectors as inputs to the neural network.
string of text and output the handwritten version o3 @

0.0

of the text.
* Our goal was to see if we could use a neural LSTM Recurrent Neural Networks e

network that had been used to generate
handwriting in order to complete drawings given
that writing and drawing are related tasks.

0 1 2 3

* We used the LSTM RNN architecture developed by Alex Graves for handwriting
generation, which consists of a window layer, 2 hidden layers, and a mixture £ . ° A
density output layer. drawing, given the first 50 points of the test image.

o We removed the window layer, i.c. the attention mechanism used to determine Ve tested on 100 test images and calculated the

which parts of the string of text were most relevant to the handwritten points mean squared error between the generated image
being generated. and the true test image.

s o We also changed the initial activation from a zero vector to the vector encodings > /Average error across all 100 test images = 17.68.
We used Google’s Quick Draw dataset, a described above

. | Diseussion |
categories. outputs

The drawings are stored as collections of points
(x, y, t), where x, y are the x- and y- coordinates,
and ¢ is an indicator variable indicating whether
the point occurs at the end of a stroke.

We focused on one object category, i.e. cars, to
test the neural network’s ability to complete
drawings.

Specifically, we used 99,740 drawings of cars: Hidden 1
o 96,740 for our train set

o 100 for our test set

0 = 8 2 & By

B 00 EE S Y T T ——

This graph shows an attempt at generating a car

* Opverall, the neural network was unable to
complete the drawings accurately.

* Part of the reason may be that we chose a
difficult object class, as drawing a car involves a
fair amount of complexity.

Hidden 2

Window

Inputs

&) @ & @ E .+ Usingadifferent architecture, perhaps one involving CNNs to capture image Alex Graves Paper: htps://arxiv org/pdf/1308.0850.pdf
information, could be interesting to try out. Handwriting generation implementation:
?//\ == @ L\D % yay éj j? « Using a more sophisticated encoding mechanism for our input (object class + first ~ https://github com/Grzego/handwriting-generation
T 50 points of drawing) Quick Draw dataset:

. . . pS: gi X '200g 1V q i 2
» Expanding the number of object classes we train on and generate. Cars are L S e e

somewhat difficult to draw, we could try something easier.

