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Angles-Only Relative Orbit Determination Using Deep Recurrent Neural Networks
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Future missions involving the interaction of multiple satellites
present increasingly demanding relative navigation requirements
which must be achieved autonomously using limited onboard
resources. Vision-based navigation techniques deliver an effective
response to these needs by providing an inherently passive, robust,
and high-dynamic range capability which uses simple sensors that
are already on board most spacecraft. Furthermore, because of
their low cost, low power consumption, and small form factor as
compared with other metrology systems, these sensors enable
accurate relative navigation while complementing the current
trend of spacecraft miniaturization.
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State-of-the-art star trackers (left and center). Overlaid images taken of a target
spacecraft during the ARGON experiment (right) using a DTU star tracker.

On-Orbit A Space Situational
Servicing Awareness
Problem Statement and Challenges

This research project focuses on the far-range angles-only relative
navigation problem, where an observing spacecraft is seeking to
estimate the relative motion of a target space object. The features
available to the observer include its own orbital and attitude state,
as well as bearing angles which subtend the line-of-sight vector
pointing to the target. In this problem, constrained dynamical
observability generally makes it difficult to estimate the full 6D
relative state from these simple feature sets. Common solutions
approach the problem by iteratively linearizing the nonlinear
dynamical system equations to employ least-squares batch
estimation. However, this method inherently neglects system
nonlinearities which can actually improve the dynamical
observability. Furthermore, while it is rather simple to generate
large and relatively high-fidelity data sets representative of real
scenarios, no current approaches make use of deep learning.
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Supervised Learning Problem and Data Generation

Project goal: Use deep recurrent neural networks (RNN) to learn the

relationship between the observer-obtained measurements and the

unique relative orbital state of the target. Evaluate the RNN model

performance over a variety of hyperparameter choices.

Input data features: Each training example consists of temporally-

ordered sequences of 12-dimensional feature data, consisting of:

* Observer absolute orbit € R®, as parameterized by a set of
classical orbital elements (a, e, i, 2, w, M)T

« Observer absolute attitude € R*, as parameterized by a set of
attitude quaternions (qo, q)7

« Bearing angles € R?, subtending the line-of-sight vector in the
camera frame, given by the azimuth and elevation (a, €)7
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Outputs to be learned: This project is framed as a supervised
learning problem, where the target relative state corresponding to
the sequence of input data is provided as the truth.
« The target relative state € R®, corresponding to the last
measurement sequence is to be learned. It is parameterized by
a set of Relative Orbital Elements: (6a, 64, Gey, 6ey, Siy, 6iy)
Dataset generation: Large high-fidelity datasets of the observer and
target orbital motion can be numerically propagated using the
Space Rendezvous Satellite Simulator (S3) which realistic sensor
emulators which capture representative noise characteristics.
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Hyperparameter study: This project focuses on building intuition on
the applicability of RNNs for Relative Orbit Determination.
Accordingly, four distinct hyperparameter studies were done:

1) Learning rate using the Adam optimization method.

2) RNN laver depth using fixed number of LSTM units
3) Number of LSTM units using fixed RNN layer depth

4) Number of temporal sequences of feature data.

Deep Learning Framework and Results
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Test cases (underlined is nominal for other cases):

* Learningrate: 0.001, 0.01, 0.1

* RNN layer depth with LSTM cells: 1 layer, 5 layers, 10 layers

¢ Number of LSTM units: 64 units, 128 units, 256 units

* Number of temporal sequences (p): 20 sequences, 40 sequences
» 30,000 total examples, 80% train / 10% dev. / 10% test split

Trained over 50 epochs

Learning Rate 3.78 km 2.45 km

RNNDepth  [NNORRIE 2.45km 1.89km
LSTM Units 2.86 km 2.45 km 2.63 km
Temporal 2.45 km ~
Sequences

Table 1: Average relative orbit determination test errors in kilometers.

Discussion: These results outperform several current analytic
approaches which leverage only a reduced dynamics approach
through measurement model linearization. In general, the learning
rate was found to improve training and dev accuracy up to a certain
point, and this is reflected in the test results. If more epochs were
allowed for the smaller learning rates, errors would likely be smaller.
RNN depth was shown to have a substantial effect on test accuracy,
with deeper networks displaying the best results. Instead, number of
LSTM units generally displayed minimal effect on test performances.
Finally, adding more temporal sequences improved test performance.
It is expected, however, that continuing to add more temporal
sequences will eventually yield diminishing returns.




