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Deploying deep learning models onto devices with limited memory and
computing power has always been a limitation for machine learning due to
the heavy computation required. A possible solution is to compress DNNs
using ternary weight quantization.

Ternary weight quantization is a new approach was proposed by Zhang
and Liu to have the weights discretized into 3 values: -1, 0, 1. Ternary
Weight Networks (TWN) appears to be a promising compressing model
that has comparable performance compared to the full precision floating
point weight networks (FP).

In our project, we are evaluating the relative robustness of TWNs vs. FP
models against random noise and adversarial noise.

To investigate the robustness of TWNs vs FP, we are using a CIFAR-10
dataset on ResNet20. CIFAR-10 is an image classification benchmark
containing images of size 32 * 32 RGB pixels in a training set of 50000
and a test set of 10000.

weight layer

X
identity

TWN are trained using methods described in Trained Ternary Quantization
by Zhu et al. The weights in each layer are quantized into 3 values, -Wn, 0,
+Wp after each iteration of backpropagation.
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To investigate the relative robustness networks, we will evaluate the performance
of the network against test images with random and adversarial noise added. On
the original dataset, the FP ResNet20 achieved 91.75% topl accuracy and the
TWN ResNet20 achieved 91.71% topl accuracy.

To study random noise, Gaussian noise, Poisson noise, Salt and Pepper noise, and
Speckle noise are added to the test set and the noisy dataset is fed to FP and
TWN and the performance were then further recorded.
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To assess the robustness of the full precision and ternary models against
adversarial noise, we calculate the absolute mean difference between the
adversarial example and the original image.

Adversarial example for floating point network:
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We used the average of mean(abs(noise)) over dataset images as our metric
for robustness. This shows the difficulty of generating new adversarial examples
to deceive the networks. As figures show, both in random noise and adversarial
noise there is no meaningful difference in robustness.
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Full Mean Difference 73.819317 73.819370

As a regularizer, ternary weight networks bring major advantages in memory
and computation cost for small devices. In this project we showed there is no
meaningful robustness loss relative to random and adversarial noise. This
alongside Zhu et al.’s result that there is no significant loss in performance can
prove ternary weight networks to be a reasonable replacement for floating point
weight networks without loosing the advantages.

A next step for this project can be extending it to more comprehensive classifier
networks like AlexNet to see how these results generalize, visualizing the
activations can also help see how ternary weight networks and floating point
weight networks differ in perceiving inputs.



