

GANs for Ultrasound Compressed Sensing

Ahmad Ghalayini, Soheil Hor, Khaled Saab Email: {ahmad2, soheilh, ksaab}@stanford.edu

Stanford ENGINEERING Computer Science

Introduction

- Motivation: Ultrasound (US) implants have a small array size with limited power, space, and bandwidth
- Idea: Proposing an end-to-end compression and reconstruction solution based on generative adversarial networks (GANs)
- Aim: Reconstruct high quality B-mode images from highly compressed US measurements
- o Why GANs?
 - They perform well in image restoration in similar biomedical applications (e.g. MRI reconstruction [1])
 - > They have not yet been investigated for **ultrasound** CS reconstruction

Challenges

In compressed sensing:

- o Aliasing artifacts due to undersampling
- o Low SNR with more undersampling

In small size US arrays:

o Low resolution in lateral direction

In our approach:

- $\circ\,$ RF data & ultrasound B-mode images are scarce
 - > Find ways to create training data
- o GANs can get unstable during training
- $\circ\,$ Loss function for compressed sensing is not well defined

Data

- Ultrasound dataset: publicly available as part of Kaggle nerve segmentation contest [2]
 - > 5000 B-mode images of neck, 47 patients
 - > Evaluation set: Images from 7 randomly selected patients
- o Each B-mode image is cropped to 9 slices of size 64x256
- simulates small ultrasound array size and deep tissue imaging scenario
- K-wave acoustics simulator is used to extract time series data corresponding to each target B-mode slice
- $\circ~$ Timeseries data is then compressed to 8% of its original size using a binary random sampling matrix

Model

Results

Image quality comparison			Algorithmic metrics		
	Target	FFT		Time	CSP*
CS	7.5 dB	22 dB	CS	0.02s	8%
GAN	15 dB	7.3 dB	GAN	0.004s	8%
FFT	7.6 dB	$>\!<$	FFT	0.02s	100%

 PSNR is used for comparing quality of image reconstruction to target

o GAN generates closer image to target than CS & FFT

* Compression sensing percentage

Conclusion and Future Work

- GANs show promise in ultrasound image reconstruction with benefits over traditional CS algorithms
- o Benefits:
 - o Faster at image reconstruction (5 fold)
 - Produce better quality images than CS when undersampling ratio is high
- o Next steps:
 - Professional assessment for generated images
 - Training on larger and more diverse dataset
 - o Experimenting with different loss functions

References

[1] Mardani, Morteza, et al. "Deep generative adversarial networks for compressed sensing automates MRI." arXiv preprint arXiv:1706.00051 (2017).

[2] https://www.kaggle.com/c/ultrasound-nerve-segmentation