o Motivation: Ultrasound (US) implants have a small array size\
with limited power, space, and bandwidth

o Idea: Proposing an end-to-end compression and reconstruction
solution based on generative adversarial networks (GANSs)
o Aim: Reconstruct high quality B-mode images from highly
compressed US measurements
o Why GANs?
» They perform well in image restoration in similar biomedical
applications (e.g. MRI reconstruction [1])
> They have not yet been investigated for ultrasound CS
reconstruction
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(Pill-sized ultrasound device, credit: Arbabian Lab)

Gl compressed sensing:
o Aliasing artifacts due to undersampling
o Low SNR with more undersampling
In small size US arrays:
o Low resolution in lateral direction
In our approach:
o RF data & ultrasound B-mode images are scarce
> Find ways to create training data
o GANS can get unstable during training
o Loss function for compressed sensing is not well defined
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o Ultrasound dataset: publicly available as part of Kaggle nerve segmentation \

contest [2]
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Data Simulation

> 5000 B-mode images of neck, 47 patients

o Each B-mode image is cropped to 9 slices of size 64x256

> Evaluation set: Images from 7 randomly selected patients

» simulates small ultrasound array size and deep tissue imaging scenario
o K-wave acoustics simulator is used to extract time series data corresponding to

o Timeseries data is then compressed to 8% of its original size using a binary

B-mode Image
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*Simulated using K-wave acoustics simulator
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Image quality comparison Algorithmic metrics

Target FFT Time CSP*
CS  75dB 22dB CS 0025 8%
GAN 15dB 7.3dB GAN  0.004s 8%
FFT 7.6dB _><_ FET  0.02s 100%

o PSNR is used for comparing
quality of image
reconstruction to target

o GAN generates closer image
to target than CS & FFT
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Conclusion and Future Work
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o GANs show promise in ultrasound image reconstruction with
benefits over traditional CS algorithms
o Benefits:
o Faster at image reconstruction (5 fold)
o Produce better quality images than CS when under-
sampling ratio is high
o Next steps:
o Professional assessment for generated images
o Training on larger and more diverse dataset
o Experimenting with different loss functions
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