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MOTIVATION RESULTS AND DISCUSSION

Music notations like » ,J, or &3 are common in daily life. However, playing these notes or assigning

meaning happens to be as complex as language processing itself. We aim to use Deep Learning to | | Figure 2. shows results of our training set: examples correctly labeled
increase understanding of musical language and to translate them into a format suited for assigning o Notes accuracy defined as total percentage o Notes and sample accuracy significantly in-
location of keys on piano. Every musical symbol provides 2 vectors of information: of musical notes correctly labeled in evalua- crease from 20k to 40k training data.
. . . R . tion data set e Notes and sample accuracy fixed from 40k
e Duration: Type of note (filled oval, filled oval with a stem, etc) denotes how long the note is held o Sample accuracy defined as percentage of to 70k training data.
e Pitch: Audible frequency of the note determined by its location of the staff (horizontal lines with P Y P g
spaces in between) 80 ; . . . . .
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This work is useful for music instructors and learners alike who may want to play music without need- VKVMMW\

ing to learn formal music language. Recent attempts in Optical Music Recognition (OMR) [2] have been

encouraging in identifying notations of music. Our project attempts to expand on recent OMR strategies

presented by Jorge, et.al.[1] using Lilypond engraver [3]).
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In our project, we take input in graphical PNG format which represents a sequence of musical notes and % T 30k 45K % T % 5k 30k 45K
output a series of integer labels that can be post processed into XML, JSON, or other custom formats. steps steps steve
G or interoperability, we have developed a canonical vocabulary. L Figure 1: (a) notes accuracy, (b) sample accuracy, and (c) training loss vs steps during training phase.
DATASET PREPARATION DL ARCHITECTURE CONCLUSION
We used public domain data such as one from stage 1 stage 2 stage 3 stage 4 1. Our model seems to have threshold for min-
[ref Jorge], which, was insufficient so, we gener- c s = c= c = imum dataset needed for training
ated our own random music sequences. Figure M52 B:s=E: B2 8§58 .
2. shows sample input sequence with labels § £ E o — § £ ;.:A i § 5 EA | E 5 2}  m 2. LSTM performs better with more samples
corresponding to the symbols. The figure also i E IS E S E s E (Run1>Run 2 > Run 3)
shows training sample distribution. \—2x—/ —2x—/ 3. CNN reaches a finite limit beyond 40,000
samples (no improvement in recognizing
" T ? ? ? [49]50]50] - [ - [32]32[12]12] - | - [11] notes better)
E - | —> LSTM - LSTM - - > LSTM I—! l CcTC 4. In order for better LSTM performance, more
E __‘ 6 6 6 randomization of sequences may be needed
Figure 2: (a) Sample Input; (b) Dataset Distribution Figure 3: CNN-LSTM-CTC Architecture
RunNum _TrainSize TestSize LearningRate NumofSteps Epochs Figure 3 represents high level architecture of our DL network which is based on Recurrent Convo-
P B b s & lution and LSTM, further using Connectionist Temporal Classification (CTC) loss method to collapse
Run3 73700 300 0.001 1474 32 sequences and predict blanks (CNN-LSTM-CTC). Pre-processed (encoded) data are used for training
. our RCNN model. We use Adam Optimizer for gradient descent.
Table 1: Dataset Information
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