Computer-Aided Brain Abnormality Detection Using CAT Images of Brain

Nima Hamidi, Ahmadreza Momeni
Stanford University

Introduction

The abundance of medical imaging data as well as
recent advances of deep learning models have en-
abled researcher to create models that can perform
as good as radiologists. Disease detection using MR
images and CT scans have attracted a lot of atten-
tion.

In this project, we study detection of three brain
issues using head CT scans. We use real-world CT
scans to detect hemorrhage, mass and chronic white
matter loss.

Dataset

Dataset contains 970 brain CT scans. The data is
split into:

= Training set: 675 images

= Validation set: 192 images

= Test set: 96 images

The data is split randomly. All the scans belonging
to one patient lie in one of the sets.

= Number of slices: ~50-60 slices/scan

= Size of each slice: 512 x 512

« Pixels: single channel in Hounsfield Units(HU)
Labels:

= Acute, negative, and chronic

= White matter loss, Intraparenchymal hemorrhage,
Extraaxial collection, Subarachnoid, Mass,
Herniation

Figure 1: A sample brain CT with hemorrhage.
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Figure 2: A sample image to feed the network. 3.25 ;
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Training Figure 4: Validation Loss
+ Adam optimizer is used Labels Train acc. Val acc.
«lr=1le—4, 8 =09, B = 0.999, decay = 0.99 —
! L' ! " coca White matter 0.680 0.788
+ Batch size: 8 Hemorrhage  0.696 0.833

= Number of epochs: 100
= Data augmentation: random shift, flip and
rotation

Table 1: Accuracies
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Challenges

Diverse labels: Finding the most related, and
informative labels and putting them in the same
buckets

3D images: Aggregating slice-level features
using Average pooling

Small dataset: Deploying methods such as
data augmentation

Extremely imbalanced dataset: Deploying
methods such as weighted loss

Future Work

Collecting more data: Working closely with
our collaborating medical research group to label
more positive images for each label at slice level
with localization

Slice-level classification: instead of
scan-level and aggregating decisions for scan-level
through methods such as random forest
Utilizing localization: Enforcing network to
identify the location of each label by defining loss
based on localization, e.g., IOU loss
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