Deriving the Optimal Blackjack Policy Using Deep Q-Learning

Allen Wu
CS 230 Final Project, Stanford University

Blackjack is one of the oldest casino games, and remains
one of the most popular. In blackjack, the player’s goal is
to have the sum of the cards in his hand be greater than the
sum of the cards in the dealer’s hand, without that sum
exceeding 21. He starts with two cards and can hit to
receive more. If the player wins, he doubles his bet.
Because blackjack is an almost purely Markov process, has
a clear reward scheme, and has a closed-form optimal
policy, it represents a promising environment for exploring
and testing reinforcement learning techniques.

Deep Q-learning is an extension of O-learning that uses a
neural network instead of a Q-matrix and utilizes a replay
memory buffer, generalizing Q-learning to more complex
state and action spaces.

We attempt to derive the optimal policy for blackjack using
deep Q-learning.

e Experience Replay Buffer

o Following the seminal paper Playing Atari with Deep Reinforcement
Learning, we implement a deep Q-network that learns from an
experience replay buffer.

o Whereas traditional Q-learning updates after online experiences, Mnih
et al.’s deep QO-network stores experiences in a buffer of (state, action,
next state, reward) tuples and learns by sampling from this buffer after
set time intervals. This allows sparse rewards to fully propagate through
the network and provides a more stable target for training.

o We use a buffer of the last 20,000 experiences and sample batches of
size 256. These numbers are larger than the parameters Mnih et al. used
because we have fewer states, more of which are terminal.

e Deep Q-Network

o We represent our Q-matrix with a fully connected neural network with
ReLU activations and batch normalization.

o The network takes a state and outputs 5 scores that approximate the
expected reward of taking each action from our given state.

Evaluation

e We evaluated our networks by two criteria: the average reward over
50,000 episodes following training and a score measuring the
similarity of the derived optimal policy to the closed-form optimal
policy. This latter score is out of 340, with 1 point for state.

The following table summarizes the scores for deep O-networks with
several numbers of layers #» and scaling factors 4. For brevity, we use
the notation DQN(n, k). We also implemented a traditional Q-network
for comparison, which we trained for 50 million episodes with similar
parameterization to the deep O-networks.

Network Average Reward Policy Score
QN -0.2240 228
DQN(3,1) -0.1904 247
DQN(3,7) -0.0967 245
DQN(7.7) -0.0902 254

o To prevent our agent from considering illegal actions, we mask the
scores of illegal actions with arbitrarily negative rewards. L
e Hyperparameters

Blackjack Model

o We use a state space of 5-dimensional tuples, representing

For comparison, these are the average rewards over time during
training for networks with 3 layers and k=3, 5, and 7.

the sum of the player’s hand, whether it’s the first action of
an episode, whether the hand contains an ace, whether the
hand is paired, and the card the dealer has showing.

We need to consider whether it’s the first action of an
episode because some actions, such as surrendering and
doubling, are only allowed as the first action in a hand.
Similarly, splitting is only allowed when the player’s hand
is paired.

Aces may be counted as either 1 or 11, and allow the
player greater flexibility.

We consider all five actions available in casino blackjack:
hitting, standing, surrendering, doubling, and splitting.
When a player hits, he gets another card. When he stands,
he requests that the dealer complete his hand and score the
game. To complete his hand, the dealer hits according to a
predetermined rule. In most casinos, the dealer hits when is
hand sums to 16 or lower, and on 17 when his hand
contains an ace. We follow this convention.

Doubling means doubling the bet, hitting, and standing.
We model splitting as doubling the bet and starting a new
hand featuring one of the original cards, which has the
same expectation as starting two hands from the same card.
We assume an infinite deck, which both approximates the
standard practice of using a “shoe” of many decks and
greatly simplifies simulation.

o We primarily parameterize our Q-network by a neuron scaling factor &
and the number of layers.

o The scaling factor k determines how many neurons are in the first

hidden layer, after which we use a geometrically decreasing number of

layers until we output the 5 scores for each action.

We find that increasing both & and the number of layers generally

improves performance. We haven’t fully explored this pattern of

improvement yet, having tested only up to 7 layers and k= 7.

o We tuned our other hyperparameters by observing how long our
network took to train and by checking how well our network learned
that taking the surrender action deterministically loses half a bet.

o Ultimately, we decided to take a descent step every 4 episodes, used a
learning rate of 0.0001, a discount rate of 0.999, and stochastic gradient
descent with momentum 0.9 and weight decay 0.0001.

o

e Exploration

o Perhaps our biggest deviation from convention is our exploration
method. We use e-greedy exploration with an annealing € according to
the formula 0.05 + 0.95*e"[(# episodes - decay_period)/decay_scale].

o We found that our agent had difficulty learning the rewards of the more
obscure actions, so we wanted it to explore more aggressively.

o Traditionally, people anneal € according to a factor of e”(-# episodes),
which has the nice property of tending to 0 as the number of episodes
tends toward infinity. However, this factor is also convex, causing the
agent to begin exploiting relatively quickly.

o To this end, we also restrict random selection of the best-scoring action.

o Lastly, these are graphs of policy score as a function of & and n.

Analysis and Future Exploration

e We were surprised by how hard blackjack was to learn. Although we
outperformed traditional Q-learning, we could not learn the optimal
policy. We originally assumed a small network would be sufficient.

e To improve our model, we could further tune our hyperparameters, use
a more sophisticated network structure, or explore regularization.

e We don’t account for player blackjack, which pays 1.5x the bet. This
may have skewed our results, especially regarding doubling.

References

[1] Mnih et al. (2013, December). Playing Atari with Deep Reinforcement Learning.
[2] Roderick, MacGlashan, Tellex. (2017, N ber). Imple the Deep Q-Ne k
[3] https://www.blackjack-chart.com/

