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Problem

Breast cancer accounts for over 25% of cancer diagnoses and
15% of cancerous deaths in women [1]. Despite extensive
research with methods such as genome-wide association
studies (GWAS), only 84% of breast cancer heritability can be
explained by currently known genes, most likely due to
GWAS's inability to detect additive, small gene signals (the
dominant hypothesis of phenotype formation) [2]. Additionally
the GWAS study design is plagued by the confoundedness
between the transcriptome and expressed phenotypes,
despite sophisticated statistical techniques to deal with
complicated interactions [3]. A new method is needed for
ascertaining the causative relationship between transcriptome
profiles and carcinogenesis.

Dataset

To assess the ability of the Deep IV model to uncover
carcinogenesis-mediating pathways using genomic mutations
as the instrument, transcriptome profiles as the treatment
variable, and cancerous (1) vs healthy (0) as the outcome
variable, we employed whole-genome and whole-
transcriptome data from the Genotype-Tissue Expression
(GTEx) project and The Cancer Genome Atlas (TCGA). The GTEx
dataset includes 11,688 samples that are non-cancerous with
matched whole-genome and whole-transcriptome data. The
TCGA dataset includes 978 breast cancer samples with
matched whole-genome and whole-transcriptome data. When
the two datasets are interjoined there are 13,980 genes and
53,196 transcripts measured. To make network training
computationally tractable, we reduced the transcript space to
2,344 transcripts of genes that are hypothesized to have a role
in carcinogenesis.

We employed the Adam Optimizer with the default
parameters [4]. We utilized the following integral loss function
over training data D of size T = |D|.
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We use the following unbiased estimate of the loss function to
train our model, replacing the integral with a sum over
samples from the fitted treatment distribution function.
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Network Architecture

In this project, we applied the method described in “Deep IV:
A Flexible Approach for Counterfactual Prediction. To do this,
we utilize a two-stage Deep Neural Network (DNN), where the
first DNN, the policy network, takes input z (gene mutations;
exogenous) and creates predictions of p (transcript
abundance; treatment variable) [5]. These predictions of p are
then fed into the second DNN, the response network, to
predict y (phenotype, cancerous or health; outcome variable),
thus removing the endogeneity between p and y, enabling the
determination of causal relationships between the
transcriptome and carcinogenesis. To interpret these causal
relationships, the response network is used as a data-
generating process to create a simulated dataset containing
the causal relationship uncovered by the Deep IV network,
that can be examined using classical statistical methods (i.e.
Trees).

Using simulated data with an underlying causal relationship,
we demonstrated that the Deep IV model’s performance is
unaffected by increasing confoundedness, while the
performance of a standard Feed-Forward Network does
poorly at recovering the true counterfactual function.
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Results

Decision Tree from Simulated
Wet-Lab Results

We performed a grid search, selecting for number of layers, number of nodes, and the hyperparameters for learning rate, L2
regularization, and dropout rate. Below we show the training and validation for both of our stages with the preferred model specification
highlighted in green. To optimize the full DeeplV model, we select the best model specification for the first stage, and then use the
predicted outcomes from this optimal first stage to train the optimal second stage [5]. Ultimately, using this two stage DeeplV framework,
we ended with a .5% classification error on the test set. Our second stage actually models the causal relationship between gene expression
and cancer. Thus, we can use the trained second stage to simulate outcomes for varying gene expressions as if we had performed
controlled scientific experiments in the lab to overexpress and underexpress certain genes. Using simulated outcomes form the second
stage, we constructed a decision tree to interpret the causal relationship of complicated interactions between gene expression levels.

Model Architecture
(layers/node: L2; Dropout Rat
activation/output) Training MSE

(100,100,100}, 1.00E-3, 0, 0, tanh/linear) 0.974 0.976
([200,100,50], 1.00€-3, 0, 0.4, tanh/linear) 0.806 1.085
([200,200,200], 1.00E-3, 0, 0, tanh/linear) 0.974 0.976
(1200,200,200], 1.00E-3, 1.00E-4, 0, tanh/linear) 1.002 0.993
2nd Stage
Model Architecture
(layers/nodes; LR; L2; Dropout Rate; Training Cross- | Validation Cross-
activation/output] Entrop Entrop
([50, 50], 1.00E-5, 0, 0, sigmoid/sigmoid) 0.019 0.019
([100, 50], 3.00E-5, 1.00E-4, 0, tanh/sigmoid) 0.036 0.038
([100, 50], 1.00E-5, 0, 0, tanh/sigmoid) 0.014 0.017
([100, 50, 10], 1.00E-05, 0, 0, sigmoid/sigmoid) 0.044 0.046

Future Work

Although we discovered a number of transcripts that are
influential in mediating carcinogenesis in breast tissue as well
as quantifying their causative effect on carcinogenesis, we must
validate these results with wet-lab experiments. This would
consist of manual up and downregulation of the identified
genes to reduce the abundance of the corresponding
transcripts followed by monitoring for carcinogenesis behavior
(i.e. measuring mutant p53 levels). Additionally, this study
notably suffers from batch effect due to all health samples
coming from the GTEx dataset and all cancerous samples
coming from the TCGA dataset. In order to validate our model
further, we have partnered with Dr. Assimes of the Stanford
School of Medicine to work with NIH data that does not exhibit
batch effects as well as increase the sample size, utilize the
complete transcriptome space, and try more extensive
hyperparameter tuning.
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