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= Duplicate the VGG network to test if the synthesized
images can potentially improve classification accuracy

Motivations A (1). Colorization Regression Model
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The regression model has the worst performance among all the models.
e = L2 loss is not robust in handling the multimodal nature of colorization.

Annealed Mean Technique #(z:.) = E[fr(Zn.)], fr(;) = oxplos@/T) = |t favors grayish colorization. If an object can take on a set of distinct ab values,
) Sl the optimal solution to the L2 loss will be the mean of the set.

B. VGG Clas cati Model Both the classification model and the transfer learning model perform decently well
= Both models treat the problem as multinomial classification.
Annealed-mean technique interpolates the predicted distribution to produces both
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= CIFAR 10 Dataset
= Colorization:
= 50,000 training images, 5,000 dev images, 5,000

I vibrant and spatially consistent colorization results.
testimages, image size 32x323 ‘ = T =0.89 works the best in this case.
= The CIFAR RGB images are converted into Lab = Colorization in general boosts object classification accuracy and confidence.
color space
* VGG:

o ) Loss Function L =(v,?) = —Zy-logv
= 10,000 training images, 1000 dev images, 1000 =

test images, image resized from 32x32x3 to
224x224x3 = Implement the rebalancing method introduced in paper | to further improve the
vibrancy of the colored images
= Train on larger data set such as ImageNet to achieve better generalization




