

Image Colorization and Classification

Peng Li¹, Zhefan Wang²

¹ Department of Civil and Environmental Engineering, Stanford University ² Department of Electrical Engineering, Stanford University

Introduction

Tasks

- · Build an automatic colorization system that takes in grayscale images and outputs colorized images
 Duplicate the VGG network to test if the synthesized
- images can potentially improve classification accuracy

Motivations

- Image colorization has very useful applications such as historical image/video reconstruction
- Realistic colorization can potentially improve the classification accuracy for grayscale images due to extra information provided by colors

Challenges

- Colorization task has multi-modal nature (i.e. objects can take multiple plausible colorization). Eg. It is reasonable to predict an apple in a grayscale image to be either green, yellow or red
 Colorization task is not to produce the original RGB
- images, but to produce plausible colored images

Related Work

- I. R. Zhang, P. Isola, and A. A. Efros. Colorful image
- II. K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015

Data

- CIFAR 10 Dataset
- 50,000 training images, 5,000 dev images, 5,000 test images, image size 32×323
- The CIFAR RGB images are converted into Lab color space
- VGG:
- 10,000 training images, 1000 dev images, 1000 test images, image resized from 32×32×3 to 224×224×3

Models

Framework

A (I). Colorization Regression Model

A (II). Colorization Classification Model

the CNN predicts each pixel's ab value from 313 classes. (Quantized *ab* color space with a grid size of 10. A total of 313 ab pairs are in gamut.) Also used VGG to do transfer learning

B. VGG Classification Model

Results

Colorization

Classification				
Grayscale Colorized Annealed GroundTruth				
	3	3	No.	
	S. D. D.	3"	3	
चें के के				
'H 'H 'H 'H				
Truth	Grayscale	Colorized	Annealed	Ground Truth
horse	airplane (25%)	dog (23%)	dog (70%)	horse (37%)
deer	cat (24%)	cat (35%)	frog (57%)	deer (67%)
		_		

Conclusions

- The regression model has the worst performance among all the models.
- L2 loss is not robust in handling the multimodal nature of colorization
- . It favors grayish colorization. If an object can take on a set of distinct ab values, the optimal solution to the L2 loss will be the mean of the set
- Both the classification model and the transfer learning model perform decently well
- Both models treat the problem as multinomial classification. Annealed-mean technique interpolates the predicted distribution to produces both vibrant and spatially consistent colorization results.
- T = 0.89 works the best in this case
- Colorization in general boosts object classification accuracy and confidence.

Future Work

- Implement the rebalancing method introduced in paper I to further improve the vibrancy of the colored images
- Train on larger data set such as ImageNet to achieve better generalization