Image completion, or image in-painting,
is @ new and rapidly growing area of
research in computer vision. It involves

taking an image with some pixels
removed or obscured, and then trying to
guess the missing pixel values, so that
the in-painted image matches the
original. Current state of the art models
employ GANs to learn a distribution for
the missing pixels; however, these
models are computational expensive
and hard to train. As well, they can
typically only be used on specific image
classes (e.g. human faces, natural
scenery, etc.) For this project, more
traditional convolutional networks were
employed.

CIFAR-10: 60,000 32x32 pixel RGB
images from 10 different classes
. 8x8 mask applied to the center

of every image to create an input X
and ground truth Y

* The ground truth Y is an 8x8x3
image which is flattened into a 192
dimensional vector

Original Inage

Ground Truth Y

Image Competion on CIFAR-10
Mason Swofford

mswoff@stanford.edu

L Models | Results & Error Analy

Various convolutional models were employed to test how different
architectures affect performance. Mean squared error was used as the cost
function for all models
Fully Convolutional Network

The first models tested were various fully convolutional networks, made up
of only convolutional and max pooling layers. Fully convolutional networks
have been shown to be effective for image segmentation problems, as
they maintain spacial information in the image. Three different sized
networks were tested and the input sizes at each layer are listed below.
Note: all layers are valid convolutions with rectified linear activation unless
otherwise noted.

* Shallow Network: 32x32x3 -> 28x28x10 -> 24x24x20 -> 12x12x20 (Max
Pooling) -> 8x8x20 -> 8x8x3 -> 192x1 (Flatten)

Deep Network: 32x32x3 -> 28x28x20 -> 24x24x40 -> 12x12x40 (Max
Pooling) -> 10x10x60 -> 8x8x80 -> 8x8x3 -> 192x1 (Flatten)
Super Deep Network: 32x32x3 -> 32x32x40 (7x7 Kernel “Same”
Convolution) -> 32x32x40 (7x7 Kernel “Same” Convolution) -> 26x26x40
-> 20x20x60 -> 16x16x60 -> 8x8x60 (Max Pooling) -> 10x10x60 ->
6x6x60 -> 2x2x48 -> 192x1 (Flatten)

Example Fully Convolutional Network

Convolutional Network with Fully Connected Layers
The next model used was a convolutional network with two fully connected
layers at the end. These types of networks are often used in image
classification problems.
* Fully Connected Network: 32x32x3 -> 28x28x10 -> 24x24x20 -> 12x12x20
(Max Pooling) -> 8x8x30 -> 6x6x40 -> 1,440x1 (Flatten) -> 768x1 (Fully
Connected Layer) -> 192x1 -> (Fully Connected Layer)

depth

eight
~ ==

‘width

Encoder Decoder Network
The last models tried were two encoder decoder networks. These networks
first perform convolutions to decrease the size of the image and create a
small dimensional "encoding” of the image. They then up-sample the
encoding using deconvolutions to create the output image.
* Encoder Network: 32x32x3 -> 28x28x10 -> 24x24x20 -> 12x12x20 (Max
Pooling) -> 8x8x30 -> 4x4x128 -> 6x6x3 (3x3 Kernel Deconvolution) ->
8x8x3 (3x3 Kernel Deconvolution) -> 192x1 (Flatten)
Deep Encoder Network: 32x32x3 -> 28x28x30 -> 24x24x40 -> 12x12x40
(Max Pooling) -> 8x8x40 -> 4x4x40 -> 1x640 (Flatten) -> 1x768 (Fully
Connected Layer) -> 2x2x40 (3x3 Kernel Deconvolution) -> 4x4x40 (3x3
Kernel Deconvolution) -> 8x8x3 (3x3 Kernel Deconvolution) -> 192x1
(Flatten)

Here are the train and dev losses vs epoch for select networks.

Deep Encoder Network

Fully Connected Network

0022
0020
oos
o016
o014
o012

0010
[100

200

%0

devloss

%0

Deep Convolutional Network

ooazs

00200

oas0

oouzs

00100

00050

— tainloss

A

[
W

100

200 EN %0 o

Shallow Network

aos0 ‘
aoss

o] |
oo
oon

o025

— wain oss
— devioss

Ground Truth

o021

0020

o019

ooe

o017

o006

[——
— devloss

o015
3

Example Outputs

Deep Encoder Network

Shallow Network

* As expected, the deeper models were able
to over fit the training set; so early stopping
had to be used to get the best performing
models

In particular, the models with fully
connected layers (encoder networks and
fully connected networks) quickly over fit
the training set.

Surprisingly, the shallow network was able
to perform similar to the deeper models on
the development set

* The models were able to perform
reasonably well on the test set. They tended
to blur the image; so they did not perform
well on very precise images which required
straight lines to look natural (e.g. the cross
on the flag).

With more compute and time, it would be
interesting to try these same models on a
larger dataset of larger images (e.g.
ImageNet 64x64 RGB dataset). On a larger
dataset, the deeper networks would likely
outperform the shallow network, as they
can learn more complex mappings and
benefit from more data

It would be interesting to also train a GAN
on these small datasets to see how well the
state of the art performs with limited data
and small images

It is also possible that these simple
networks would perform better if they were
only learning one class of images (e.g. faces)

eferences

€5231n Convolutional Neural Networks for Visual
Recognition.
231n.github.i i k

Amos, B. (2018). Image Completion with Deep
Learning in TensorFlow.
p: github.io;
completion/ [Accessed 21 Mar. 2018].

Long, Shelhamer, Darrel (2014). Fully Convolutional
Networks for Semantic Segmentation.
http://arxiv.org/abs/1411.4038

