A Deep Learning Model for MODEL ARCHITECTURE MODEL TRAINING
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THE PROBLEM

Many wearable devices contain micro-
electromechanical (MEM) sensors, which can be 1-D Convolutional Layer
used for activity recognition. Our model

recognizes and transcribes weight-lifting Large stride “clown.samples” the dta
exercises by reading MEM input sequences
collected during a workout
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Our TRAIN set came from 5 out of the 6 lifters
Our DEV and TEST sets came from the 1 unseen lifter

OUR DATASET
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eam Searcl ecoaer 1 i BLSTM-50 73.0%
Exercise Transcription m m BLSTM-50 (with Rerack?) 783%
MODEL VISUALIZATION SC ISR 96.5%
ATTITUDE (ROLL, PITCH, YAW ) CONV-64 BLSTM-128 with Rerack) 97 . 6%

BLSTM-k: Bidirectional LSTM with k hidden units.
CONV-k: 1-D Convolutional Layer with k filters.
Rerack: Added one rerack label to each exercise to detect the rerack
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With our model, a smartwatch could
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Our Database RPN =
— LSTM SOFTMAX OUTPUT —CURL —BLANK recognize, count and record the exercises
' you perform during a workout, helping you
6 Lifters 4 Exercises o7 stay on top of your fitness goals. With the
Geoff Sabri Pierce Curl  Squat o appropriate data, our model could also be
Rooz Claire Sophia Bench Clean 025 extended to assess lifting form or track
8 , 000 Reps 2’ 300 Sets ° o physical therapy prescriptions.
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