Loss

Exploring Effects of Knowledge Distillation in Model

Compression and Accuracy

Authors: Matthew Tan, Evan Sheehan, Dian Ang Yap

Stanford University

Current state of the art deep learning models for image
recognition algorithms often utilize large and deep networks.
Training such models often require multiple GPUs over an
extended periods of times. However, recent research by Song
Han (SqueezeNet), Bengio (Fitnets) and Hinton (Knowledge
Distillation) has proven the potential of creating much smaller
networks without substantial loss in accuracy. In some cases,
these networks can be further post-processed to match / exceed
the larger network's performance

Our goal in this project was to delve into Knowledge Distillation
and evaluate its feasibility, accuracy and effect on smaller
networks. We tested this model on MNIST to check its feasibility
and then on a larger dataset to prove its scalability. To do so, we
retrofitted MobileNet, a state of the art image classifier, to the Cat
Dog dataset, pruned it, and used Knowledge Distillation with the
pruned model. Doing so allowed us to discover the effects of
Knowledge Distillation on various models.

Project Overview

Dataset: We used MNIST to test this architecture’s feasibility
and the Kaggle Cat Dog Dataset to test scalability. We used an
80-20 split for train & test sets.

Model: For MNIST, we used state of the art models from the
open source community. For the Cat Dog Dataset, we utilized
MobileNet with transfer learning applied to it. Both of these
were compressed to create the teacher-student architectures
from which we trained our models.

Features: Pre-processing was done on the images (resizing,
randomization) to fit them to the model being used.

Method: To evaluate MobileNet, we first retrofitted the last
layers in the teacher to match the Cat Dog Dataset and then
applied transfer learning in order to fit it. We then removed
layers from it, using various methods, to create the student,
including zero density, random layers , etc., and evaluated
different ways of weight initialization for it, including pre-
loaded weights from teacher and randomly initialized weights.
We then retrained the teacher-student architecture, keeping the
teacher’s weights frozen so that backpropagation was only
carried out on the student. Various weightings of the teacher-
student architecture were further explored, including varying
the loss lambda parameter and tuning other hyperparameters
(batch size, number of epochs, etc.).

Loss function (1= A)(vtrue — Ypred) + A * (Yreacher — Ypred)

Accuracy vs Batch Size in MNIST using lambda = 0.7
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Using different lambda loss parameters can allow for faster i
convergence and even higher accuracy than simply learning
from the ground truth. However fully trusting the teacher
network seems to negatively affect the accuracy of the
model.

Results Discussions

We observe that knowledge distillation appears to work
exceptionally well, compared to standard pruning, when the
number of layers removed is decreased by only a small number
amount, but seems to have detrimental effects when the
proportion of layers removed from the teacher increases to a
significant fraction of the overall size of the network.

Furthermore, we observe that certain random layers that are
removed seem to possess more gravity in altering results when
they are removed than others. We also see that knowledge
distillation seems to cause converge at a much faster rate, or
requires fewer epochs to converge, but also drops a lot faster as
the number of layers removed begins to increase. We hypothesize
that the number of epochs is not sufficient to draw any broader
conclusions than this. Ideally, we would be running far more than
3 epochs with the full dataset to properly train the model, but
GPU and cloud processing limitations hindered our ability to
fully explore the space of possible avenues comprehensively.

Future Directions

Limited computational power has constrained the extensiveness of our
results. However these results present a strong case for the possibility of
compressing models without much loss of accuracy. Different methods
of removing layers were seen to impact the accuracy of the model.
Running the model over the range of loss-lambdas for the cat-dog
dataset may show us much more interesting details. Further, the cat dog
dataset, while consisting of large images, is relatively small in size.
Testing the model on larger datasets such as ImageNet may yield much
more useful / interesting results

Finally, a technique discussed in the related works but not explored in
this was the use of hints and the controlling of both their position and
number. In some ways, pre-loading the weights is some form of hint,
although a possible extension would be to run it on randomly initialized
weights and see what the effect of this would be.
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