

Generating Yelp Reviews with GANs Abhi Kulgod, Veeral Patel, Jayen Ram

Motivation

- Millions of users turn to Yelp as de facto site for choosing restaurants.[1]
- Because of this popularity, there is a monetary incentive for both good and bad actors to detect or generate bad reviews
- Good actor: Yelp filters out 25 percent of all submitted reviews it thinks are fake, biased, or unhelpful rants and raves.[2 This preserves integrity of their site.
- Bad actor: New restaurant may generate fake reviews to show a false sense of quality and obtain more customers
- Our generative adversarial network will tackle both of these problems. We will focus on the task of generating fake Yelp reviews since it's a much complex problem (especially for adversarial

Problem Setup

- Datasets of real and suspected fake Yelp reviews are used for adversarial training
- Limit generated review to 30 words and used massive dataset to help generate.
- · For this problem, we want to generate reviews that won't sound like fake, generic bots; using adversarial training will allow us to optimize for sentence generation as opposed to prediction using normal RNNs

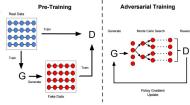
Dataset

- · We used two datasets when training our LSTM and GAN setup:
 - 1. Yelp Review Dataset
 - a. 5 million reviews from Yelp[3]
 - b. from 11 metropolitan areas
 - c. 200,000 were used for training
 - 2. Fake/Real Yelp Dataset[4]
 - a. 200,000 reviews from Yelp
 - labelled as suspected real and suspected fake
 - from 2 metropolitan areas (Chicago and NYC)

Methods

Overview

- Model the Generator as an RL agent[5] where:
 - States and actions are represented by generated sequences and tokens
 - Reward is modeled by the



Generator

- We first learn word embeddings using Word2Vec on the Yelp dataset
- G is an RNN with LSTM, pre-trained on real Yelp sequences
- · Then begin adversarial training with loss:

$$J(heta) = -\mathbb{E}[R_T|s_0] = -\sum_{y \in \gamma} G_ heta(y|s_0) \cdot Q_D^G(y,s_0)$$

Policy Gradient

• Given the discrete, non-differentiable input space, we use policy gradient methods to estimate updates to the policy, G:

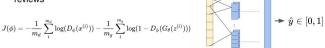
$$\pi_{ heta}(s = Y_{1:t-1}, a = y_t) = G_{ heta}(y_t|Y_{1:t-1})$$

• Using the REINFORCE algorithm,

$$abla_{ heta} J(heta) pprox \sum^T \mathbb{E}_{y_t \sim G_{ heta}} [
abla_{ heta} \log G_{ heta}(y_t | Y_{1:t-1}) \cdot Q_D^G(y_t, Y_{1:t-1})]$$

Discriminator

- D is a CNN with parallel filters of sizes [1, 2, 3, 4, 5, 8, 10, 15, 20] to emulate looking at unigram, bigram, etc.[5]
- Pre-trained using samples from G and Yelp

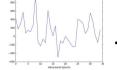


- When generating sequences, we experiment with both Monte Carlo search and Beam search for generating our next token
 - . MCS: sample from complete distribution modeled by G
 - · Beam Search: samples from top-k most likely next tokens and we decrease beam width over our adversarial training (limit is 1000)
- We then normalize D's outputs in order to control the variance of the reward

Results

n-Gram Scores[6]

Algorithm	n=2	n=3	n=4
Random	0.03977	0.00001	0.0000
LSTM	0.37874	0.17603	0.06958
GAN - BS	0.26772	0.11074	0.03579
GAN - MCS	0.29007	0.13991	0.05451
GAN - NORM	0.35383	0.15388	0.05518



- jambalaya and it was fantastic. <UNK> was very sweet and
- one of my favorite places for italian food every time (had a reservation available) but somehow nyc nice

Discussion

- We faced challenges with tuning hyperparameters as there was high instability
- Applying GANs to real data with inconsistent content proved difficult, as opposed to modeling synthetic data as other papers have done
- Reviews are about a mix of restaurants from a mix of people--not one theme like generating Shakespeare or Obama speeches.
- Normalizing rewards has a stabilizing effect on generator

Future Work

- Incorporate new evaluation methods on quality of sentences (crowdsource, etc).
- Experiment and tune loss functions to increase GAN
- Conditional Generation to generate different kinds of reviews based on different start tokens

References