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reviews that won’t sound like fake, generic
bots; using adversarial training will allow
us to optimize for sentence generation as
opposed to prediction using normal RNNs

Dataset

We used two datasets when training our
LSTM and GAN setup:
1. Yelp Review Dataset

a. 5 million reviews from Yelp!®

b. from 11 metropolitan areas

c. 200,000 were used for training
2. Fake/Real Yelp Dataset!*l

e Dis a CNN with parallel filters of sizes [1, 2, 3, 4, 5, 8, 10, 15, 20] to emulate
looking at unigram, bigram, etc.!®!

e Pre-trained using samples from G and Yelp
reviews
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Optimization
e When generating sequences, we experiment with both Monte Carlo search
and Beam search for generating our next token
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e Bad actor: New restaurant may generate oo o 1 " o jambalaya and it was fantastic.

. 1 fried plantain was excellent.
fake reviews to show a false sense of Generator <UNK> was very sweet and
quality and obtain more customers delicious.

e Our generative adversarial network will e We first learn word embeddings using Word2Vec on the Yelp dataset R ——
tackle both of these problems. We will e Gis an RNN with LSTM, pre-trained on real Yelp sequences ) italian food every time (had a
focus on the task of generating fake Yelp e Then begin adversarial training with loss: — — reservation available) but
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training). Policy Gradient Discussion

& J e Given the discrete, non-differentiable input space, we use policy gradient R .
. p P ROiGd e We faced challenges with tuning hyperparameters
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Problem setup as there was high instability
mo(s = Yiu-1,0 = yt) = Go(y[Y1:-1) e Applying GANs to real data with inconsistent content

o Datasets of real and suspected fake Yelp : " roved difficult, as opposed to modeling synthetic
reviews are used for adversarial training e Using the REINFORCE algorithm, P ’ PP 9 Y,

e Limit generated review to 30 words and S data as other papers have done
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e For this problem, we want to generate Discriminator people--not one theme like generating Shakespeare

or Obama speeches.
e Normalizing rewards has a stabilizing effect on
generator

Future Work

e Incorporate new evaluation methods on quality of
sentences (crowdsource, etc).

e Experiment and tune loss functions to increase GAN
stability

e Conditional Generation to generate different kinds of
reviews based on different start tokens
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