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Predicting:

Road segmentation for autonomous vehicle
applications is difficult, as images can include
partial occlusions, shadows, etc. Worse, such

applications typically require real-time
performance. Our team modified Marvin
Teichmann’s KittiSeg framework to, using a

genetic algorithm, optimally drop components of
a FCN8-VGG16 model to optimize for MaxF1 while
running in less time than the original model.

Data:

All models were patch-trained on the KITTI Road
Detection dataset with a 241/48 (289 total) image
train/validation split. Inputs are color road images
in various locations/lighting conditions with ground
truth color maps (Figure 1).

Figure 1: Training Example with Ground Truth from the Kitti
Road Detection dataset

Features:

During training, the FCN8 model accepts a single
random 256x256 image patch, encodes it, then
upsamples it into a block with one softmax output
per original pixel. No other features (i.e. LIDAR,
stereo imaging, etc.) are used.

Model:

The standard KittiSeg model uses an FCN8-VGG16
model as an encoder, consisting of five pooling
layers and thirteen standard convolutional layers:
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It then uses a series of transpose convolutions for
upsampling, following the definition below:
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We optimized runtime using a genetic algorithm
with mutation (random bit toggling) and crossover
(random selection with union) on binary vectors
representing layers to drop, splicing in t£.Tile
ops wherever shape changes occur. Evaluation
was performed after 250 steps as a benchmark.

Results:

Despite the simplicity of tiling relative to
convolution, runtime was not strongly affected by
any layer drops. As a follow up, a FCN8 with
conv2_2, conv3_2, and conv4_2 bypassed was
trained for 1.5k steps alongside a vanilla FCN8. All
results are in Figure 2.

Max F1 Avg. Precision = Runtime (ms)
FCN8 90.2379 90.6890 358.1518
Learned FCN8  17.6806 30.0485 356.5779
FCN8 93.1652 91.5854 361.4553
(1.5k steps)
Trimmed FCN8, 33.3214 21.6512 372.0243

(1.5k steps)

Figure 2: Summary of Performance Metrics for All Models
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Figure 3a and 3b: Visualization of Predictions of FCN8 and Trimmed FCNB8 after 1.5k steps

Discussion:

Although layer splicing appears to hurt FCN8’s
ability to classify images, trimmed FCN8
sometimes finds road-like features (Figure 3). Loss
appears to stagnate when training with several
learning rates (w/ Adam), indicating the new loss
function may be stuck in a local minimum. It was
later found that statistics were recorded on
dropped layers, suggesting further inspection of
the TF graph could lead to decreased run times.

Future:

Future work could include a second attempt with
longer training and extensive hyperparameter
tuning, as well as exploring alternatives to our
method: optimizing the network for parallelization,
following Molchanov et al. on network pruning, or
performing full image training like Oliveira et al.

Alternatives to the genetic algorithm (i.e.
cross-entropy method) could also be explored.
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