

Deep Sensor Fusion for 3D Bounding Box Estimation and Recognition of Objects

Ayush Gupta (ayushg@stanford.edu)

Malavika Bindhi (mbindhi@stanford.edu)

Objective

- To use Deep Learning for sensor fusion of camera and LiDAR information for 3D bounding box estimation and object recognition without geometric modelling
- Unlike existing methods that either use multistage pipelines or hold sensor and dataset-specific assumptions, PointFusion is conceptually simple and application agnostic
- Using PointNet to produce point cloud features and a standard CNN to process the corresponding image, it learns to combine and use these features to predict 3D box hypothesis and object identification
- The obtained average IOU score of 0.71 and classification accuracy of 95.62% is state-of-the-art

Dataset

KITTI 3D Object Detection Dataset

Contains recorded traffic scenarios, duly annotated, ranging from freeways, over rural areas, to inner-cities, with many static and dynamic objects

- Image Input: Left color image, Sony ICX267 CCD
- Point Cloud: LiDAR points, Velodyne HDL-64E

	Train data	Dev. data	Test data
# examples	6750	365	366

- · Trained through all difficulties: easy, moderate, hard
- Classes: Car, Van, and Pedestrian (Predominant)

Preprocessing

- Filtered cloud points outside camera view angle
- Randomly sampled 2048 point cloud points
- · Transformed labels to velodyne coordinates
- Applied Spatial Transformation Net. to canonicalize input space²

Model

- PointFusion has three main components:
- 1) A PointNet network that extracts point cloud features
- 2) 2) A CNN that extracts image appearance features
- 3) A fusion network that combines both features
- The PointNet network directly consumes the point cloud, respecting the permutation invariance of points, learning embedding space

- Using Transfer Learning, we obtain image features by ResNet-50 pre-trained on ImageNet
- The fusion layer concatenates the feature vectors and applies some fully connected layers, outputting a 3D box hypothesis and classification output

Experimentation

- · Based on empirical observations across multi-runs,
- Batch normalization hampers 3D bounding box estimation performance, and hence is not used.
- SmoothL1 and mean-square error loss works well for the boxcorner predictions and classification, respectively
- 3. Adam optimization with a decaying learning rate is used
- Total trainable parameters: 1,808,027

Results

	Training	Dev.	Test
A. Class. accuracy	96.27%	96.16%	95.62%
B. Box Average IOU	0.73	0.73	0.71

For ref., /10.1109/TCSVT.2016.2616143, gets a best case IOU of 0.55 on UW-RGBD dataset

Correct Result

False Result

Discussion & Future Scope

- Strength: Fusing data without lossy input pre-processing
- Drawback: The variance of the regression target is directly dependent on the particular scenario
- Solution: Generate box proposals by sliding windows instead of directly regressing
- Future Work: A single end-to-end 3D detector

References

- Xu, Danfei, Dragomir Anguelov, and Ashesh Jain. "PointFusion:
 Deep Sensor Fusion for 3D Bounding Box Estimation." arXiv
 preprint arXiv:1711.10871 (2017)
- Qi, Charles R., et al. "Pointnet: Deep learning on point sets for 3d classification and segmentation." Proc. Computer Vision and Pattern Recognition (CVPR), IEEE 1.2 (2017): 4.