

Convolutional Models for Biomedical Image Segmentation Kaggle 2018 Data Science Bowl

Alexander Haigh (haighal), Frits van Paasschen (fritsvp), and Joseph Murphy (murphyjm)

Problem

- Cell identification in biomedical images is essential to drug development
- Data is inherently inhomogeneous and labeling by hand is costly in time and funding
- Goal: Deliver robust model for labeling cell nuclei across wide variety of cell types, microscopy methods
- Dataset: 603 train images, 67 dev, 65 test using multiple microscopy techniques and; provided by Kaggle. Train and dev images have associated masks, submit test prediction to Kaggle for evaluation

Model Architecture

- UNet, introduced by Ronneberg et al. 2015
- Modifications to their model
- 256 x 256 input image (instead of 572 x 572)
- "Same" convolutions result in 256 x 256 output, no cropping
- Sigmoid activation with BCE Loss rather than softmax classification
- Modified final layers
- o Post-processing: global map → individual masks

Figure 1: U-Net Architecture, as introduced by Ronneberg et al. The U-Net is a fully convolutional NN that predicts a global segmentation map over the entire image (outputs a binary 0 or 1 for each pixel, with 1 corresponding to part of a cell). The contracting path collects high-level semantic information about the image at each step; these features are then upsampled and combined with lower-level information in the expansion path.

Data Augmentation

- Convert to black and white, normalize to [0, 1]
- Invert B&W versions of 3-channel images
- Resize input to 256 x 256
- Random piecewise affine transformations
- Merge individual cell masks into one mask for training

Figure 2: Sample Augmented Training Example. Left, raw microscope image. Right, image after a horizontal flip and a piecewise affine transformation. Red circle highlights cell warps.

Postprocessing and Prediction

- Otsu Thresholding: prob. distribution → global mask
- Split global mask into local masks by BFS

Figure 3: Sample Prediction. Left, output of the UNet (float values in the range [0, 1]). Middle, predicted mask after applying Otsu Thresholding, which binarizes the 0-1 heatmap by finding the threshold that minimizes the weighted sum of intra-class variance. Right, ground-truth labeled segmentation mask. Sample difference in red.

Final Layer Modifications

Evaluation Metric

- Kaggle defines evaluation metric, LB
- For each image, average cell-wise precision over various IoU thresholds for predicted and actual objects:

$$\frac{1}{|thresholds|} \sum_{t} \frac{TP(t)}{TP(t) + FP(t) + FN(t)}$$

- LB metric averages the average precision of entire dataset
- ALso measure average pixel-wise IoU, precision, and accuracy over the global mask

Results

Model	Dev				Test
	Accuracy	Precision	IoU	LB	LB
Base UNet	0.860	0.478	0.804	0.342	.277
UNet +1 Conv	0.931	0.451	0.786	0.337	.265
UNet -1 Conv	0.913	0.460	0.797	0.321	.274

Error Analysis and Next Steps

- Artifacts in images conjoined masks, leaked information
 Waterfall thresholding, hysterisis, binary opening in postprocessing, no resizing at test time
 - Weighted Loss: force algorithm to learn border pixels
- Heterogeneous input: Different in-convolution for 3-channel images
- New Architecture: Mask-RCNN to predict individual masks directly

Figure 4: Sample Error. Left, raw microscope image. Middle, predicted mask. Right, ground-truth mask label. Errors include conjoined masks as well as masks that leak information as a result of imaging quality; this includes finger-like projections, "holes" in masks, and split masks. Example errors circled in red.