Neuronal Death in Neural Networks with Group Sparsity Regularization Nicholas Dwork

Overview

- The structure of a neural network is determined by hand.
- Choosing the number of neurons in each layer is a shot in the dark.
- Choosing too many neurons leads to over-fitting. Choosing too few neurons cannot fit the data well.
- The purpose of this project is to develop an algorithm that automatically determines the number of neurons in each layer of a neural network.

The Optimization Problem

Neural networks are often trained by solving a model of the form:

$$\underset{x}{\text{minimize}} \underbrace{\sum_{i} f(x, d_i)} \tag{1}$$

- \bullet x is a vector comprised of the parameters (weights and biases) of the neural network
- di is an element of the training set

When ${\cal J}$ is sub-differentiable, problem (1) can be solved with sub-gradient descent.

Let x_g be the parameters for the $g^{\rm th}$ neuron. The vector x is the concatenation of all x_g . Problem (1) can be modified to include L_2, L_1 regularization as follows:

$$\underset{x}{\operatorname{minimize}} J(x) + \underbrace{\gamma \sum_{g} \|x_g\|_2}_{R(x)}, \tag{2}$$

where γ is a regularization parameter, $\|\cdot\|_2$ represents the L_2 norm, and R is the regularization function. This amounts to calculating the L_1 norm of a vector of L_2 norms.

When J is differentiable and R has a simple proximal operator, problems of this form can be solved using the Stochastic Proximal Gradient algorithm [1].

For $k = 1 \dots K_{\mathsf{max}}$,

$$\begin{split} y^{(k)} &= x^{(k)} - t_k \hat{\nabla} f\left(x^{(k)}\right) \\ z^{(k)} &= \mathsf{prox}_{t_k g}\left(y^{(k)}\right). \end{split}$$

The prox function is the proximal operator, defined as

$$\operatorname{prox}_{tR}(y) = \operatorname{argmin}_x R(x) + \frac{1}{2t} \|x - y\|_2^2.$$

The proximal operator for the L_2,L_1 norm is $\mathrm{prox}_{L_2,L_1}(x)=\sum_g \mathrm{prox}_{L_2}(x_g),$ and the proximal operator for the L_2 norm is

$$\begin{aligned} & \underset{t\|\cdot\|_2}{\mathbf{prox}}(x) = \left\{ \begin{array}{l} (1-t/\|x\|_2)\,x & \text{if } \|x\|_2 \geq t \\ & 0 & \text{otherwise} \end{array} \right. \end{aligned}$$

This amounts shrinking the x vector by t (and setting it to 0 if less than size t).

Regularization Growing

- When J is convex, the stochastic sub-gradient algorithm is guaranteed to reach the global minima (under mild assumptions). However, when J is non-convex, the algorithm is only guaranteed to reach a local minimum.
- On the test problem (described later), I found that I reached a local minimum for regularization parameters of interest (e.g. $10^2, 10^3, \cdots, 10^3$). These parameter values (those of the local minima) yielded insignificant accuracies on the test and training sets (e.g. $\approx 15\%$ accuracy).

To generate a result that yielded good accuracy with high accuracy, I created a regularization growing algorithm:

Initialize net to random values net = Solve problem (1) For
$$p=0,1,\ldots,P_{\max},$$
 $\gamma=10^p$ $t=2\cdot 10^{-(p+2)}$ net = Solve problem (2)

The network is "warm started" with the result of the previous iteration (which used a smaller regularization parameter).

Test Problem: CIFAR-10

- \bullet Consists of 32×32 color images of 10 categories: airplane, car, bird, cat, deer, dog, frog, horse, ship, and truck
- \bullet The dataset consists of 60,000 images (50,000 in the training set and 10,000 in the test set)
- Goal: properly classify each image

Test Network

- The network consists of 3 convolutional layers followed by 3 fully connected layers (as shown below)
- The convolutional layers start with 300, 200, and 100 neurons, respectively
- The fully connected layers have 500, 200, and 10 neurons respectively
- A softmax is applied to the output of the final layer

Results

- After training the network with Stochastic-Subgradient Descent, 99.9% accuracy was achieved on the test data and 73% accuracy on the test set. This suggests significant over-fitting.
- After training with regularization growing, the number of active neurons is reduced.
- Future work: once the sparsity pattern is determined, the network can be polished (train with the appropriate network without any regularization)

Acknowledgements

I would like to thank Surag Nair and Daniel O'Connor for their guidance and advice throughout this project. I would also like to thank Amazon Web Services for providing the computing resources that made this project possible.

References

[1] Lorenzo Rosasco, Silvia Villa, and Bang Công Vũ. Convergence of stochastic proximal gradient algorithm. arXiv preprint arXiv:1403.5074,