Neuronal Death in Neural Networks with

Group Sparsity Regularization

Nicholas Dwork

Stanford | ENGINEERING

Electrical Engineering

Overview

e The structure of a neural network is determined by hand.

e Choosing the number of neurons in each layer is a shot in the dark.

e Choosing too many neurons leads to over-fitting. Choosing too few
neurons cannot fit the data well.

e The purpose of this project is to develop an algorithm that automatically
determines the number of neurons in each layer of a neural network.

The Optimization Problem
Neural networks are often trained by solving a model of the form:
mini{nize Zf(.l’, d;) (1)
J(z)
® z is a vector comprised of the parameters (weights and biases) of the
neural network
e d; is an element of the training set

When J is sub-differentiable, problem (1) can be solved with sub-gradient
descent.

Let 2, be the parameters for the g neuron. The vector x is the concatena-
tion of all z;. Problem (1) can be modified to include Lo, L regularization
as follows:

mlnlmlze J(x) + Z [[zgll2, (2)
N
R(z)
where 7 is a regularization parameter, || - || represents the Ly norm, and

R is the regularization function. This amounts to calculating the L; norm
of a vector of Ly norms.

When J is differentiable and R has a simple proximal operator, problems of
this form can be solved using the Stochastic Proximal Gradient algorithm
[1]-
For k=1... Kmax

y(k) = k) _ 0V (z(k))

20 = proxy,g (y(k)> .

The prox function is the proximal operator, defined as
: 1 2
proxp(y) = argmin, R(x) + - [z = 3.

The proximal operator for the Ly, L1 norm is prox,, L
and the proximal operator for the Ly norm is

{(1 - t/HIH zif [zl > ¢

otherwise

Z:] proxp,(g),

prox(z)

tl-ll2

This amounts shrinking the x vector by ¢ (and setting it to 0 if less than
size t).

Regularization Growing

o When J is convex, the stochastic sub-gradient algorithm is guaranteed to
reach the global minima (under mild assumptions). However, when J is
non-convex, the algorithm is only guaranteed to reach a local

Test Network

e The network consists of 3 convolutional layers followed by 3 fully con-
nected layers (as shown below)

e The convolutional layers start with 300, 200, and 100 neurons, respec-
tively

o The fully connected layers have 500, 200, and 10 neurons respectively

e A softmax is applied to the output of the final layer

Fully Connected
Layers

Convolutional Layers

© On the test problem (described later), | found that | reached a local min-
imum for regularization parameters of interest (e.g. 10%,10%,---,10%).
These parameter values (those of the local minima) yielded insignificant
accuracies on the test and training sets (e.g. ~ 15% accuracy).

To generate a result that yielded good accuracy with high accuracy, | cre-
ated a regularization growing algorithm:

Initialize net to random values
net = Solve problem (1)
Forp=0,1,..., Pmax,

v =10P

t=2.10-(+2)

net = Solve problem (2)

The network is “warm started” with the result of the previous iteration
(which used a smaller regularization parameter).

Test Problem: CIFAR-10

e Consists of 32 X 32 color images of 10 categories: airplane, car, bird,
cat, deer, dog, frog, horse, ship, and truck

o The dataset consists of 60,000 images (50,000 in the training set and
10,000 in the test set)

e Goal: properly classify each image

Results

® After training the network with Stochastic-Subgradient Descent, 99.9%
accuracy was achieved on the test data and 73% accuracy on the test
set. This suggests significant over-fitting.

o After training with regularization growing, the number of active neurons
is reduced.

e Future work: once the sparsity pattern is determined, the network can be
polished (train with the appropriate network without any regularization)

Acknowledgements

| would like to thank Surag Nair and Daniel O'Connor for their guidance
and advice throughout this project. | would also like to thank Amazon
Web Services for providing the computing resources that made this project
possible.

References

[1] Lorenzo Rosasco, Silvia Villa, and Bang Céng Vii. Convergence of
stochastic proximal gradient algorithm. arXiv preprint arXiv:1403.5074,
2014.

