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Introduction
Turbulent flow is important in many engineering applica-
tions. However, simulating turbulence is computationally
very expensive due to extremely high resolution require-
ments. Large Eddy Simulations (LES) that simulate only
the large scales have become popular due to their much lower
cost, but require modeling of the small scales. Here, we pro-
pose to enrich LES data by populating it with small scales
obtained using a Generative Adversarial Network [1] (GAN).
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Typical simulation of a turbulent flow
ref: B. Olson, LLNL

Problem Description

Aim: Given a low resolution realization of a flow field, can
we generate a physically realistic upsampled field that satis-
fies the governing equations?

= High-resolution (HR) data is generated by numerically
solving the governing equations given by the
incompressible Navier-Stokes equations using an in-house
solver (PadeOps) on 64 processors and collecting 1280
snapshots in time

Each snapshot is comprised of four fields: 3 components
of the velocity vector (u, v, w), and the kinematic
pressure (p) each of size 64 x 64 x 64

= Low

esolution data is generated by filtering the HR data
down to 16 x 16 x 16 using the explicit filter shown below
that’s derived as a best approximation to the sharp
spectral filter
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Model

The architecture of TEGAN is similar to that in SRGAN [2]
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The flow field is constrained by the continuity and pressure
Poisson equations:
V-u=0,
—Vzp = Vu:Vul
Loss function minimized for the generator network during train-
ing is a combination of

)L
Lresnet = Ap) Leontent + AP Lphysics
AE) L0SE + ABLenstrophy
Lphysics = (1 = Ac) Lpressure + AcLecontinuity
= Content loss: Loptent
sg: Mean squared error between the high resolution and
Lysg: M quared bet the high lut 1
generated fields
Lenstrophy: Mean squared error in the derived enstrophy
field Q (2 = w - w, where w = V x u) to sensitize the
generator to high frequency content

LaN = (1 = Ax) Lresnet + A Ladversarial
(1-
(1=

Lout(.ut =

= Physics loss: Ljysics
Residuals of the continuity (Leontinuity) and pressure
Poisson (Lpressure) equations given above similar to [3]

= Adversarial loss: L, iyersarial

To train the discriminator, we use the logistic loss based on
predicted labels for real and generated data.

Training methodology

= TEResNet - the residual network
generator without an adversarial
component - is trained first with
different no. of residual blocks and
physics loss parameters
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= The discriminator is trained for few
iterations without updating the
generator

= Train TEGAN (both generator and
discriminator)

3D filter with periodic padding is used in
the convolutional layer of the generator
and discriminator networks

Results

Comparison to bicubic interpolation and the ground truth
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Comparison of the content and physics losses for different
physics loss weights in TEResNet. The steps observed in the
content loss correspond to local minima of the physics loss

as seen in the figure on the right.
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Discriminator output for generated data saturates at 0.5 and

the physics loss of TEGAN is smaller than that of the original
TEResNet.
Leontent Lphysics
Dev | Test | Dev | Test
TEResNet |0.0490.050 [ 0.078|0.085
TEGAN 0.047]0.047 [0.070 | 0.072
% Difference| 4.1 | 6.0 [ 103 [ 152

Table comparing the content and
physics losses on the dev and test
datasets for the TEResNet and
TEGAN models

Conclusion & Future Work

= While both TEResNet and TEGAN outperform
traditional bicubic interpolation, it’s the TEGAN that
best captures the physics

= Use WGAN-GP for improved learning stability

= Include more variety in the training data (using different
filters, experimental data, etc.)

Energy spectra of the
generated velocity
fields

= Task the discriminator with physics based classification
along with discrimination for improved performance
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