INTRODUCTION

Al systems in the videogame industry are
mainly created through decision trees or
reinforcement learning techniques [2][3],
however, | wanted to branch off of these
techniques and explore the capabilities of
deep learning in creating videogame Al. In
this project, | used data from my gameplay
and ran it through a shallow fully-connected
neural network to successfully create an Al
enemy that emulated my playing style.

penguin Tag

s 8

=) 8

Penguin Tag is a two-player game where
players play blue and pink penguins facing off
against each other. Players must avoid
getting tagged by the enemy penguins, which
are the grey penguins wearing a beanie
opposite of their color. Players can shoot
snowballs at these enemies to change them
to their team, and can also shoot snowballs at
the enemy player to have a chance of
slowing them down. The only inputs needed
from the player are the 4 keys for movement
(W,A,S,D, or arrow keys), as well as the G key
or ALT key to shoot a snowball.

USING DEEP LEARNING TO PLAY PENGUIN TAG

JR CABANSAG, CABANSAG@STANFORD.EDU

DATASET

The training data used was 2 hours of recorded gameplay, while test data was 10 minutes of
recorded gameplay. Ten times a second, the game would record the game state as a feature
vector, and also record my current key input at the time, to be used as the correct label for
the game state. The reasoning for this was to create an Al that given a game state, would
perform the same key input that | would [1].

Each feature vector contained 50 features total: each of the player penguins’ x and y
coordinates, speed, direction, and life counts, each of enemy penguins’ x and y coordinates,
directions and team, as well as up to eight snowballs’ x and y coordinates and directions. Each
label was a number from O to 5, to represent each of the 6 different key inputs (no key, up
key, right key, down key, left key, and snowball key).

To increase the amount of data acquired, | performed data augmentation by flipping the game
states horizontally, vertically, and both horizontally and vertically. This quadrupled the
amount of data collected, and also trains the network to perform the same actions in mirrored
game states.

a a Training Data Label Distributions
150000
125000
- 100000
8 a8 a0
e @ e e) E o
8 o Y e A 8 © om

m,
an
i
\
\
\
!

Key Labels

[5]
[3

MODELS

There were two main model architectures used. One was a shallow fully-connected network
with three hidden layers, each having 50 neurons. The second model architecture was a deep
fully-connected network with eight hidden layers, each with 10 neurons. Three mini-
variations of networks were created, each addressing the label imbalance in the training data
in different ways:

All Data: Trained on all of the data

Actionable Data: Trained only on data where the user pressed a key

Balanced Data: Trained on all the data, with costs normalized by class frequency

Training Data NoKey UpKey | RightKey = DownKey LeftKey SnowballKey
‘Shallow Network, All Data 0.999 0 0.001 0 I 0 0577 0.1666666667 0.0002
‘Shallow Network, Actionable Data 3 o oaxm o164 0419 0705 0189 03141666667 os77
Shallow Network, BalancedData 0012 0343 0373 0317 0385 0283 0149 02855 03402
Doop Network, Balanced Data 002 016 0176 078 0217 3% 0203 01866333333 02202
Test Data No Key UpKey RightKey Down Key Left Key Snowball Key A A
Shallow Network, All Data 099 o 0004 0008) 0 0506 0.1671666667 00026
Shallow Network, Actionable Data o 015 o4 0219 0313 o743 0175 03185 03822
Shallow Network, Balanced Data 0007 0356 0403 0320 0319 0287 0131 02793333333 0333

Deep Network, Balanced Data 003 0.167 0182 0219 087 0324 0149 01848333333 02158

PLAYING AGAINST THE Al

A webpage was created allowing us to play against each of
the network models. This served as the qualitative
judgment of the network’s performance.

EASY MODE

= Shallow Network, All Data
\ - outputted no key for most of the game states

Deep Network, Balanced Data
- probabilities were practically fixed, performed similar to an
Al with random decisions

«— Shallow Network, Balanced Data
+ runs away from enemies, targets them as well
- accidentally runs into enemies while trying to attack

Shallow Network, Actionable Data

+ aggressively pelts snowballs

+ runs away from enemies and defends teammates
+ chases player

HARD MODE

FUTURE WORK

In the future, I'd like to perform a more thorough
hyperparameter search for the deep network to have it fit
to the data better, and perhaps create an Al that has the
same frequency of no-key inputs as | do, while still being a
challenging opponent. I'd also want to explore ResNets
and see how an enemy trained on sequential data would
perform.

REFERENCES

[1] "Learning to Fight: Deep Learning Applied to Video Games | Northwestern MSIA | Student Research”,
Sites.northwestern.edu, 2018. [Online]. Available: http://sits 7/09/ g
fight-deep-learning-applied-to-video-games/. [Accessed: 20- Mar- 2018]

[2] "Epic’s Tim Sweeney: Deep Learning A.L. Will Open New Frontiers in Game Design", Medium, 2018. [Online].
Available: i ics-ti ing: P ers-i
‘game-design-5682ad32454c. [Accessed: 20- Mar- 2018].

[3]"Designing Artificial Intelligence for Games (Part 1) | Intel® Software, Software.intel.com, 2018. [Online].
Available: intel. i i ificial-intellig games-p:
[Accessed: 20- Mar- 2018].

