Problem Statement

Goal: Coordinate the operation of distributed storage units in a
distribution grid for the purposes of minimizing costs and promoting
network reliability

Due to distributed renewable generation such as rooftop PV,
distribution grid voltages can deviate from desired operating
bounds. However, the coordinated usage of storage units alongside
these renewables can prevent voltage issues. Unfortunately, it is not
possible to control them without knowledge of the distribution grid
models. This research aims to learn a suitable control strategy
through reinforcement learning without grid models.
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Data and Models

Actor Network: Input is hourly power consumption for all nodes in a
day. Output is hourly charge power for each storage unit. Dense
network with 2 hidden layers of size 100 and 50. ELU activation
function and tanh for output layer.

Data Problems: Acquiring training data is hard since 1 point is 1 days
worth of data collecting. Labeling the data with storage charging
action is hard since the optimization algorithm is too slow to label
thousands of points.

Solution: Augment existing data (150 days) with random noise and
run a heuristic that achieves near optimal performance quickly for
labels. Train the network to mimic the heuristic on augmented data.
Use real data for dev and test sets. Later use reinforcement learning
to push performance closer to optimal.

Heuristic Training Performance

Neural Network Training Loss

Set Mean Squared Error

Train 5.702E-4

Dev 2.154E-4

Test 1.99E-4

Actor Performance for Storage Control
Method Arbitrage Voltage Total
Profit Violations Performance

Neural Net 209.414 0.864 -24.893
Heuristic Control 209.992 0.878 -26.704
Optimal Control 209.577 0.295 60.539
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DDPG Implementation

Critic Network: Input is same as actor input, but also includes actor
output. Output is a scalar value for that state and action pair. Dense
network with 3 hidden layers of size 100, 50, and 25. First layer is
shared with actor network.

Exploration: Random normal noise with momentum is added to
actor output.

Training: Critic trains on several random instances to develop sense
of value of state action pairs. Then actor is trained on gradient of
critic to push actor output closer to maximizing critic output

Method Arbitrage Profit Voltage Violations Total Performance
DDPG 175.000 0.449 20.035
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Conclusion and Future Work

In conclusion, DDPG was able to nudge the heuristic controller
slightly in the right direction to achieve overall better performance
than before. Future work will be to scale this problem to a larger
network with multiple storage units. This will require significantly
more training data to be collected. Other work includes trying more
intelligent exploration policies like modifications based on the time
period the violation takes place and whether it is an over-voltage or
under-voltage.
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