

Predicting Small Molecule Binding Affinity to Serotonin Receptors Annie Marsden March 21, 2018

Overview

- We construct a deep neural network to predict the binding affinity to serotonin receptors.
- Understanding the binding behavior of these receptors is important for a diverse range of future mental health drug research.
- We show representing small molecules as vectors with binding constants for other targets can provide predictive information.
- Our neural network approach outperforms a simple linear regression model as well as a more complex matrix completion method. The metric used is the F₁ score.

Data Representation

- To represent the small molecule we construct a vector in which the ith entry gives the binding constant, K_B, of the small molecule to the *i*th chosen target (939 other targets aside from serotonin).
- A large $K_{\rm B}$ value indicates that the small molecule binds well to the target.

Experimental Results

Comparison Methods: Sparse Matrix Completion, Linear Regression Metric of performance: F_1 score

2 * true positive 2 * true positive + false negative + false positive

Method	F ₁ Score	Positive Example Accuracy	Negative Example Accuracy
Linear Regression	0.423	0.46/0.84	0.98/0.38
Matrix Completion	0.571	0.80	0.88
Neural Network	0.686	0.66/0.77	0.98/ 0.89

References

Han Altae-Tran, Bharath Ramsundar, Aneesh S Pappu, and Vijay Pande. Low data drug discover with one-shot learning. ACS central science, 3(4):283-293,

David E Nichols and Charles D Nichols. Serotonin receptors. Chemical reviews, 108(5):1614-1641,2008. The binding database.

Model

Loss function:

$$L(p) = -\frac{1}{N} \sum_{i=1}^{N} s(y_i \log p_i) + (1 - y_i) \log(1 - p_i).$$

- s allows us to give greater weight to correctly identifying positive examples. We include this to deal with the sparsity of positive examples in the dataset.
- We explore the effect of s as well as the number of layers of our neural network on the performance (as measured by F1 score). For a k-layer net we have,

$$A_0 = X,$$

 $A_j = f(W_j A_{j-1} + b_j),$
 $p = \sigma(W_k A_{k-1} + b_k).$

Where f() is a ReLU or a sigmoid.

Prediction is done by:

$$\widehat{\hat{y}}_i = p > 0.5$$

Discussion

- A shallow neural network architecture shows promising performance in predicting the binding affinity to serotonin receptors.
- Future research must implement more comparison methods to get a better sense of the kind of F₁ score that would be helpful.
- Unlike matrix completion methods, constructing a loss function with scaling factor s allows freedom in tuning the specificity/sensitivity ratio
- To increase speed of training, dimensionality reduction methods should be explored in the vector representation of the small molecule.

Thank you!!