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Introduction Neural Network |

|

Morphological Abnormalities
appear later; rely on human skills; hard to detect atypical tumors

XD

Alterations in Gene Expression
— appear early; can be automated; comprehensive;
next generation sequencing (NGS) techniques have
made measurements fast and cheap

Cancer
Diagnosis

Early detection of cancer significantly increases the
chance of successful treatment. Current state-of-art
cancer diagnosis relies on physicians’ experiences to
identify morphological abnormalities. Molecular
signatures offer an alternative option for early, objective
and systematic cancer diagnosis. Deep learning methods
are ideal for developing such models as it captures the
complicated interactions among different genes.
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The Cancer Genome Atlas (TCGA) Pan-Cancer Transcriptome Profiling
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llumina HiSeq 2000 RNA sequencing platform, log2 transformed RSEM normalized counts.
58,582 transcripts X 10,663 samples (9,807 cancer and 856 normal), 37 types of cancers
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Architecture

Cost Function
J ==L 3 loga®)pos_weight + (1 — y0)log(1 — a®)

pos_weight to balance precision and recall

Results

Train Test
Model . -
Precision | Recall | F1 Score | Precision | Recall | F1 Score
Logistic
Regression 7-fold cross validation . 0:50 0:85
SVM 0.79 0.83 0.82
2 Layer NN 0.83 0.95 0.89 0.80 0.89 0.84
4 Layer NN 0.95 0.93 0.94 0.90 0.90 0.90
8 Layer NN 0.75 0.81 0.78 0.80 0.88 0.83

Feature Reduction

*Hyperparameters: learning_rate = 1e-5, num_epochs = 500, pos_weight = 2

M terpretation of Neural Network

Prior knowledge (gene sets) Auto-encoder;
Without o Input
Feature Combined| | e e
Reduction Cell Cell ]
Cycle | Death |Adhesion
Number of
Input 58,682 | 1,264 972 1,013 2,907 512
Features
F1 Score 0.90 0.87 0.86 0.85 0.83 -

— |dentification of biomarker genes
Integrated Gradients is a method for attributing a neural networks’ prediction to its
input features by examining the gradients of inputs obtained by interpolating on a straight-
line path between the input and a baseline input, and then aggregate these gradients
together. The resulting attributions tell us which genes are responsible for predicting cancer.
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