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Introduction

Scan time and reconstruction time is a key challenge for Magnetic
Resonance Imaging (MRI). Scan time can cause discomfort for patients
and long reconstruction times can lead to delayed diagnosis by clinicians.
Time-efficient k-space sampling techniques can be used to decrease scan
times by undersampling and with compressed sensing [1]. This leads to an
increase in the computation time required when reconstructing
undersampled k-space data. Deep learning has the potential for
minimizing reconstruction times for undersampled MRI data.
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Figure 2: Implemented CNN architecture for image reconstruction Methods

(unrolled optimization framework [2])

Dataset & Features

The dataset comprised of 9,760 2D cardiac images (1/2 sagittal, 1/2
coronal slices) acquired using a gradient-echo (GRE) sequence using 12
spiral interleaves (75.6 ms) to achieve 28x28 cm2 FOV and 3.1 mm in-
plane resolution. We utilize 98% for training, 1% for validation, and the
remaining 1% for testing. The non-cartesian (spiral trajectory) 2D
(navigator) data was first gridded to a cartesian grid. Then, the data was
pseudo-randomly undersampled (by a factor of 1-2 in the x and y
dimensions) using a variable density sampling mask which would normally
be reconstructed using L1-ESPRIT [1]. In Fig. 1, the k-space data, before
and after one of the 9 different undersampling masks was applied, is
shown with the corresponding iFFT images. The final step for data
preparation included generating the coil sensitivity maps for the 8
channels.
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Figure 1: Example images before and after applying an undersampling mask
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+ Complex 3D data real/imaginary channels
« Residual block with 5 convolutional layers

Coil Sensitivity Maps

Repeated 5x

Data Consistency

“Fully Sampled” Image

« iFFT, 4 (BN & RelLU), 1 (linear), FFT data consistency (Repeated 5x)
* Implemented in TensorFlow with Tesla K80 GPUs

Results

Figure 3: Comparison of input, CNN output, and ground truth images
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Figure 4: |, error evaluation for each mini-batch
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* |, loss gives significant
improvements in reconstructed
images in test set

» Works well for both coronal and
sagittal cardiac images

« Cardiac images improved by recovering structures and applied denoising/smoothening
+ Higher undersampling masks also performed well using the current architecture
» When using the reconstructed images as navigators, similar motion estimates were extracted
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Discussion &
Future Work

Qualitative and quantitative
results of ResNet
“reconstruction” preserved
structure and exhibited low
complex |, loss
Hyperparameters for the
chosen architecture worked
well, but can possibly be
further tuned for improved
performance
Implementation on
undersampled 3D non-
cartesian dataset with
potentially doing 3D
convolutions (instead of 2D
convolutions slice by slice).
Expand training sets using
MRI data from different
anatomies




