Autogroove: Music for Sharks

Alex Bertrand [abert13@stanford.edu] & Jordan Friedland [jordanf2@stanford.edu]

Stanford

University

Introduction & Motivation L _Model ____________

Services that provide music recommendations based on seed songs have
become increasingly popular, most recently with Spotify Radio. Unfortunately,
most of these services are either untenably dependent on human labelling
(Pandora) or simply not of adequate quality (Pandora and Spotify). We propose
to come up with a more nuanced way of generating playlists and music
recommendations that have more in common than simply ‘genre.”

To that end, we have constructed a convolutional autoencoder that takes as
input a spectrogram of a short song clip and, in the process of reconstructing the
spectrogram as the output, generates a lower-dimensional encoding of the
spectrogram that can be used as input to a simple clustering algorithm. Using
these encodings, we can extract relationship between songs based on features
that the autoencoder network extracts during training.

Our data comes from the UC Irvine Machine Learning Repository’s Free Music
Archive [1]. Because we chose to construct a convolutional autoencoder, we
computed the spectrogram of 10-second samples of songs and cropped them
into 256x256 pixel ‘images’ (see example below).

The spectrograms were normalized by the total energy of the song sample
and then rescaled to the range [0, 1]. Because the vast majority of the pixels had a
value of zero and the remaining were concentrated near zero, we preprocessed
the spectrograms by multiplying them by a large number and then computing the
hyperbolic tangent. While this is a highly nonlinear transformation, we found that
this sped up training and gave us a better intuitive picture of how well our
autoencoder was working because the transformation accentuated features in
the spectrogram that were previously indistinguishable by us and by the network.

Inout spectrogram

y = tanh (cy)

Figure 1: Preprocessing of spectrogram to enhance features.

References & Acknowledgements

1] UC Irvine Machine Learning Repository. https://archive.ics.uci.edu/ml/index.php.

2] V. Turchenko, E. Chalmers, and A. Luczak, “A Deep Convolutional Auto-Encoder with Pooling - Unpooling Layers in
Caffe,” Jan. 2017.

[3]B. J. Frey and D. Dueck, “Clustering by Passing Messages Between Data Points,” Science Reports, vol. 315, no. 5814,
pp.972-976, Feb. 2007.

4] Ng, Andrew. “Sparse Autoencoders.” CS294A Lecture Notes.

Thank you to Prof. Andrew Ng, Kian Katanforoosh, our project TA Zahra Koochak, and the rest of the CS 230 teaching
team for all of the course material and for a fantastic quarter of deep learning.

The relative lack of data labelling music based on ‘groove’, ‘feel,’ or
‘danceability’ necessitates the use of unsupervised learning. For this purpose
we have chosen to use a convolutional autoencoder to extract the encoding
of a song in a lower-dimensional space which we hope will correlate to how
that song, in general, ‘feels’. From there we use clustering algorithms for
music grouping.

We minimized a simple mean-squared-error loss function in order to
train the autoencoder. Here, N is the number of training examples, h is the
height of the ‘image’ in pixels, and w is the width of the ‘image’ in pixels.

N how

T T
i=1 j=1k=1

Our model architecture was relatively standard for a convolutional
autoencoder [2][4], consisting of six convolutional layers comprising the
encoder, followed by two fully connected layers, and then six convolutional
layers comprising the decoder. We then carried out a clustering algorithm
called Affinity Propagation [3], an unsupervised clustering technique which
does not require a user-chosen number of clusters.

Selected Results

As a proof of concept that our autoencoder architecture was at least
somewhat appropriate, we trained for 100 epochs on a training dataset of
size 10 examples. From there, we proceeded to train on a dataset of 60,000
training examples for 21 epochs.

Figure 4: Autoencoder input and output after training on 10-example dataset for 100 epochs.

Loss Aeross Epochs

Figure 5: Results of training on 60,000 training examples for 21 epochs. (left) Training and dev loss
over 21 epochs. (right) Comparison of input spectrogram and reconstructed spectrogram after 21
epochs of training on 60,000 training examples.

P96 78 7148

seR FeR 1R

602561

O
O
Q|
O
O
O

aarc
Lstent Represntaton) fatened

wen evm oven 7T e e T

25,

fataned
Figure 2: Convolutional autoencoder network model. The latent representation is a
64-dimensional object that encodes the 256x256 pixel input spectrogram.

7 (i, k) « s (i, k) — max {a (i, k') + 5 (i,') }
KAk

a(i, k) « min ((»., (kk)+ Y max(0,r (M.)))

g ik}

alk,k) Y max (0, (i, k)

ik

Figure 3: for affinity ion. The i matrix r i
how well a given example serves as a cluster center for other data points. The availability matrix a
characterizes the probability with which a data point would choose another data point as its cluster
center.

One of the challenges associated with building an autoencoder is tuning the
architecture and deciding upon a value of the loss below which we can deem the
autoencoder ‘functional.” Training the network so that it can fully reconstruct
any spectrogram from a significantly lower-dimensional object is very difficult
and would require more training than we had the capability to do.

Additionally, evaluating the results of the affinity propagation clustering
algorithm proved to be a somewhat subjective process, as the network was not
trained long enough to be able to reproduce spectrograms with the accuracy
desired. Thus, we could not come to very profound conclusions about the
nature of the clustering.

Future Directions

Optimizing the architecture of the autoencoder was relatively difficult and we
are not sure whether the architecture we have chosen is indeed appropriate.
Given another six months to devote to this project, we would continue to heavily
optimize the architecture of the autoencoder and then train for a much longer
time on a larger dataset to generate a much more robust encoding system. In
addition, we would perform more sophisticated statistical analysis of the input
data to determine trends and features of spectrograms that we might want the
autoencoder to pick up on.




